한국어

Diffractive optical elements: the behind the scenes hero of structured light laser technology

121
2024-04-10 14:45:47
번역 보기

In today's rapidly developing technological era, structured light laser technology has become an important tool in the fields of 3D measurement and image capture. The core of this technology lies in a magical device called Diffractive Optical Elements (DOE), which can precisely control and shape laser beams, creating various complex light patterns. But what exactly is DOE? How does it work? Let Holoor and everyone explore the world of DOE in depth, unveiling its mysterious veil.

What is a diffractive optical element?
Simply put, diffractive optical elements are like a special transparent window that can precisely shape and control the laser beam passing through it through diffraction effects - the bending phenomenon of light when passing through small holes or slits. By creating a controlled phase delay along the path of the laser beam, DOE can generate diffraction rays with preset orders, thereby generating any desired beam pattern.

How does DOE generate structured light?
Structured light, in short, is light that is integrated into a specific pattern for three-dimensional measurement and analysis of objects. To generate this type of structured light, DOEs typically adopt a periodic grating like structure design, which allows them to generate any desired order distribution from simple lines to complex grids. This flexibility and precision make DOE an indispensable part of structured light laser technology.

Unique advantages of DOE
A significant advantage of DOEs is that they are not sensitive to the center of the beam size, which means that regardless of how the diameter of the beam changes, DOEs can maintain consistency in their shaping effect. This sturdy and durable feature, combined with their ability to easily integrate into structured light laser sources, enables DOEs to demonstrate high reliability and efficiency in various application scenarios.

Beam shaping diffusers and other applications
In addition to traditional periodic grating structures, DOE also includes other types of components such as beam shaping diffusers. These diffusers can generate multiple beam patterns such as lines, linear arrays, grids, and even more unique distributions required for special structured light applications, such as in tube sensing. These diverse beam modes further expand the application range of structured light laser technology, from industrial manufacturing to medical imaging, and then to safety monitoring and other fields.

conclusion
Diffractive optical elements are the behind the scenes heroes in structured light laser technology. They not only provide an efficient and reliable way to generate and control structured light, but also open up new possibilities for various 3D measurement and image capture tasks. With the continuous advancement of technology, we can expect Holoor DOE to bring more innovation and breakthroughs in the future, helping us explore and understand the world around us in a new way. Under the guidance of light, the unknown and complex three-dimensional world will gradually become clear and visible, revealing its unique beauty and secrets.

Source: Sohu

관련 추천
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    번역 보기
  • Microstructure evolution and mechanical properties of Ti-6Al-4V alloy prepared by dual ultrasonic vibration assisted directional energy deposition

    1. Research backgroundDirected energy deposition (DED), as an efficient and economical technology in the field of additive manufacturing (AM), is widely used in the manufacturing of metal materials. However, its high heating and cooling rates, as well as significant temperature gradients, often lead to rapid solidification, forming cross layer columnar grains and internal defects, seriously affect...

    03-21
    번역 보기
  • Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

    Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producin...

    2024-04-18
    번역 보기
  • Jingyi Optoelectronics launches a transmittance detector to detect the near-infrared transmittance characteristics of plastic materials

    Laser welding plastic transmittance tester is an important industrial testing equipment used to measure the transmittance of plastic after welding, in order to evaluate welding quality and product performance. With the widespread application of plastic products in various fields, the requirements for plastic welding quality and transparency are also increasing. Therefore, laser welded plastic tran...

    2024-04-11
    번역 보기
  • The Japanese team uses laser technology for ice core sampling to accurately study climate change

    Recently, a research team from the Astronomical Glaciology Laboratory under the RIKEN Nishina Center (RNC) of the Japanese Institute of Physics and Chemistry announced that they have developed a new laser based sampling system for studying the composition of glacier ice cores.The above image shows the discrete holes sampled 150mm from the shallow ice core of the Fuji Ice Dome in Japan (Southeast ...

    2023-09-23
    번역 보기