한국어

The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

127
2023-09-01 14:00:44
번역 보기

Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.

According to Han Htoon, a researcher at Los Alamos, this work shows that single-layer semiconductors can emit circularly polarized light without the need for an external magnetic field.

Previously, this effect could only be achieved through the high magnetic field generated by bulky superconducting magnets, coupling quantum emitters to very complex nanoscale photonic structures, or injecting spin polarized charge carriers into quantum emitters. Our proximity effect method has the advantages of low manufacturing cost and high reliability.

Polarization is a means of encoding photons, therefore this achievement is an important step in the direction of quantum cryptography or quantum communication. With a light source that generates a single photon stream and introduces polarization, we basically merge the two devices into one.

The research team stacked a single molecule thick layer of tungsten selenide semiconductor onto a thicker layer of nickel phosphorus trisulfide magnetic semiconductor. Using atomic force microscopy, the research team created a series of nanoscale indentations on thin layer materials.

When the laser is focused on the material pile, the 400 nanometer diameter indentation generated by the atomic microscope tool has two effects. Firstly, the indentation forms a "well" or "depression" in the potential energy landscape. The electrons of the tungsten selenide monolayer fall into the depression. This stimulates the emission of a single photon from the well.

Nanoindentation also disrupts the typical magnetic properties of the underlying nickel phosphorus trisulfide crystal, generating local magnetic moments pointing outward from the material. This magnetic moment circularly polarizes the emitted photons. In order to experimentally confirm this mechanism, the team first collaborated with the pulse field facility of the Los Alamos National High Magnetic Field Laboratory to conduct high magnetic field spectroscopy experiments. Then, the team collaborated with the University of Basel in Switzerland to measure the tiny magnetic field of the local magnetic moment.

The team is currently exploring methods to adjust the degree of circular polarization of single photons through electronic or microwave stimulation. This capability will provide a method for encoding quantum information into photon streams. Further coupling between photon flow and waveguide will provide photon circuits, allowing photons to propagate in one direction. This circuit will become a fundamental component of the ultra secure quantum internet.

Source: OFweek

관련 추천
  • 20 million dollars! Undersea fiber optic agreement reached, fully operational by 2026

    Recently, Confluence Networks LLC has announced a long-term partnership agreement with Laser Light Communications Inc., a developer and provider of software controlled optical network services.According to the agreement, Laser Light will adopt Confluence-1 submarine fiber optic network, which Confluence Networks is about to launch, as the core part of its global network. The protocol will last for...

    2024-05-24
    번역 보기
  • The wide application of TORNOS mind machine in diversified industrial fields

    TORNOS walking machine, also known as walking CNC lathe or spindle box mobile CNC automatic lathe, occupies an important position in the field of precision manufacturing due to its excellent performance and wide application areas. This machine tool not only integrates mechanical and electrical technologies, but also becomes an indispensable processing equipment in many industrial fields due to its...

    2024-07-24
    번역 보기
  • Shanghai Optical Machinery Institute has made progress in laser assisted connection of metal carbon fiber composite heterojunction materials

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in the laser assisted connection of metal carbon fiber composite heterostructure joints.The team used an adjustable flat top rectangular semiconductor laser as a heat source to achieve...

    2023-09-01
    번역 보기
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    번역 보기
  • BLM Launches Tunable 4kW Five Axis Laser Cutting System

    Recently, the Italian laser pipe processing group BLM Group announced the launch of an LT-Free five axis laser cutting system that can be used for laser cutting and processing of any three-dimensional metal profile, including bending forming, hydraulic forming, extrusion forming, deep drawing forming, flat or stamped forming of pipe fittings or plates.This five axis laser cutting system can provid...

    2023-10-11
    번역 보기