English

China has successfully developed the world's first 193 nanometer compact solid-state laser

14
2025-03-24 15:25:47
See translation

The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power will increase by a hundred times - when lasers are portable like laptops, precision manufacturing will usher in a mode revolution.

Deep ultraviolet (DUV) lasers play a crucial role in semiconductor lithography, high-resolution spectroscopy, precision material processing, and quantum technology due to their high photon energy and short wavelength characteristics. Compared with excimer lasers or gas discharge lasers, this type of laser has higher coherence and lower power consumption, providing the possibility for the development of system miniaturization.

 



According to Advanced Photonics Nexus, the research team of the Chinese Academy of Sciences has made an important breakthrough and successfully developed a compact all solid state laser system that can generate 193 nm coherent light. This wavelength is crucial for photolithography processes, which form the manufacturing foundation of modern electronic devices by etching complex circuit patterns on silicon wafers.

The new laser system has a working repetition rate of 6 kHz and uses a self-developed ytterbium doped yttrium aluminum garnet (Yb: YAG) crystal amplifier to generate 1030 nanometer fundamental frequency light.

Experimental device
The laser output is divided into two paths: one path generates 258 nanometer ultraviolet light (output power of 1.2 watts) through fourth harmonic conversion, and the other path drives an optical parametric amplifier to generate 1553 nanometer laser (power of 700 milliwatts).

 


Subsequently, these two beams of light were mixed with cascaded LBO (lithium triborate, LiB3O5) crystals to obtain a 193 nanometer deep ultraviolet laser output with an average power of 70 milliwatts and a linewidth less than 880 megahertz.

The research team innovatively loaded a spiral phase plate onto a 1553 nanometer beam before mixing, successfully obtaining a vortex beam carrying orbital angular momentum. This marks the first time internationally that a solid-state laser has directly output a 193 nanometer vortex beam.

 



This breakthrough achievement not only provides a new seed light source for hybrid ArF excimer lasers, but also demonstrates important application prospects in fields such as wafer processing, defect detection, quantum communication, and optical micro control.
This innovative laser technology not only improves the efficiency and accuracy of semiconductor lithography, but also opens up new paths for advanced manufacturing technology.

The successful generation of the 193 nanometer vortex beam may trigger a revolutionary change in the field of electronic device manufacturing and promote breakthrough progress in related technologies.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Researchers prepare a new type of optical material with highly tunable refractive index

    It is reported that researchers from Beijing University of Chemical Technology and BOE Technology Group Co., Ltd. have collaborated to develop a transparent organic-inorganic composite optical adhesive material with highly tunable refractive index. The related research paper was recently published in Engineering.In the early days, glass was the main raw material for optical components. In recent y...

    2024-06-25
    See translation
  • The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

    Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process...

    4 hours ago
    See translation
  • Visual platforms bring new perspectives to optical research

    The advanced testing platform of Liquid Instruments is now available for Apple Vision Pro, providing optical researchers with the first interactive 3D testing system. By integrating the Moku system with camera based visual devices, the efficiency of the laboratory has been significantly improved.The Moku platform utilizes the processing power of field programmable gate arrays (FPGAs) to provide a ...

    2024-05-23
    See translation
  • Laser Swing Welding: Principles, Characteristics, and Applications

    Application backgroundLaser swing welding technology was born out of the urgent demand for welding quality and efficiency in modern manufacturing industry. Traditional welding technology has shortcomings in precision, strength, and complex structures, which has led to the rapid application of laser welding in various fields. However, it still has defects such as pores and cracks, and has limitatio...

    2024-12-30
    See translation
  • Zhejiang University has prepared ultra strong and tough 3D printing elastic materials

    Professor Xie Tao and researcher Wu Jingjun from the School of Chemical Engineering and Biotechnology at Zhejiang University have designed a new type of photosensitive resin and used it to create a "super rubber band" that can stretch to over 9 times its own length and lift 10 kilograms of objects with a "body" with a diameter of 1 millimeter through 3D printing. The relevant results were recently...

    2024-07-06
    See translation