English

Shanghai Institute of Optics and Fine Mechanics has made significant breakthroughs in the study of laser damage performance of mid infrared anti reflective coatings

68
2025-04-07 17:28:35
See translation

Recently, the Thin Film Optics Research and Development Center of the High Power Laser Component Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with researchers from Hunan University and Shanghai University of Technology to make new progress in the study of laser damage performance of mid infrared anti reflective coatings. The research team has developed a 6-layer mid infrared double-sided anti reflective film based on HfO2/SiO2 material on a quartz substrate by optimizing the preparation process, with a laser-induced damage threshold (LIDT) of 91.91 J/cm;. The related achievements were published in Infrared Physics&Technology under the title "The performance of laser induced damage of a 2-4 μ m mid frared anti reflective coating based on HfO2/SiO2 materials".

The surface reflection loss of infrared optical components is significant, and anti reflective films have become the key to improving device efficiency. Traditional infrared anti reflective film materials (such as fluoride and sulfide) have problems such as insufficient stability and easy water absorption, while oxide materials (such as HfO2/SiO2) have become a research hotspot due to their high melting point, high environmental stability, and high LIDT.


Figure 1 (a) Transmittance of the anti reflective film (b) Reflectance of the anti reflective film (c) LIDT test of the anti reflective film


A 6-layer HfO2/SiO2 film system structure with a total thickness of 2180nm was designed using electron beam evaporation (EB) and ion assisted deposition (EB-IAD) techniques. By comparing the two processes, it was found that ion assisted technology significantly optimized the quality of the film layer, and the EB-IAD process prepared the film layer with higher crystallinity, lower surface roughness, and significantly reduced water absorption. The laser damage threshold is increased, and the LIDT of EB-IAD anti reflective film under 2.097 μ m laser reaches 91.91 J/cm2, while the EB process only achieves 11.25 J/cm;. After analyzing the damage morphology, it was found that the EB anti reflective film was affected by the nanosecond thermal effect, resulting in larger and deeper damage points. The EB-IAD film layer was mainly ablated by plasma, with a smaller damage area and stronger interfacial adhesion. This study provides theoretical basis and process reference for the design and preparation of mid infrared anti reflective films. The research results are expected to be applied to the mid infrared nonlinear crystal ZnGeP2 and more mid infrared laser systems besides ZnGeP2 crystals, such as high-power laser processing, infrared imaging, optical communication and other fields, promoting the development of related industries.

Source: opticsky

Related Recommendations
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    See translation
  • Halloween\Christmas Laser Processing Art Carnival !!

    Chanelink Halloween\Christmas Laser Processing Art CarnivalShow your design talent and win a cool laser engraver cutter.TimeUpload of work and canvassing period: October 25, 2023 - December 25, 2023Winner announcement time : December 29, 2023ContentEligible participant:Laser industry practitioners, enthusiasts, who must be at least 18 years old.Awards:First prize (1...

    2023-10-25
    See translation
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    See translation
  • Oxford University Tokamak Energy Company develops laser technology for fusion power plants

    Tokamak Energy is currently developing a new laser measurement technology for controlling extreme conditions inside fusion power plants.The laser based dispersion interferometer system is being tested at the company's headquarters in Oxford and will be installed on its world record breaking fusion machine ST40 later this year.Clean, safe, and renewable nuclear fusion power generation occurs inside...

    2024-03-14
    See translation
  • Gooch&Housego successfully acquires Phoenix Optical Technologies

    Recently, renowned precision optical technology manufacturer Gooch&Housego (G&H) announced the successful acquisition of Phoenix Optical Technologies, a precision optical manufacturer located in St. Asaf, Wales, UK. The acquisition transaction amounts to £ 6.75 million, which not only consolidates G&H's market position in the aerospace and defense sectors, but also significantly expa...

    2024-11-04
    See translation