English

Trumpf 3D printing technology innovation: zero support structure, low waste, unlimited possibilities

1230
2023-09-13 14:15:46
See translation

Ditzingen, Germany, September 8, 2023) - TRUMPF, the world's leading provider of machine tools and laser technology solutions, has improved its 3D printing software TruTops Print to print parts with suspension angles as low as 15 degrees with little need for support structures. Trumpf will present its new technology at the European International Machine Tool Show (EMO 2023) in Hannover, Germany.

Figure 1: TruTops Print allows users to print parts with cantilever angles as low as 15 degrees without the need for a support structure

"The latest version of Trumpf's TruTops Print software virtually eliminates the need for support materials, which means faster build times and lower material consumption." According to Lukas Gebhard, additive manufacturing process development engineer from toolcraft, "Unsupported printing brings parts close to their final shape, opening the door to parts and projects that were not possible before, such as near-net form fabrication of large diameter internal cooling channels."

Previously, users had to print the support structure along with the part to secure the part to the build platform, while also being used to cool the part to prevent internal tension and deformation during printing. Today, Trumpf's innovative technology means that many 3D printing applications can be carried out unsupported, even when working with difficult-to-process materials such as stainless steel.

Figure 2: Unbraced 3D printing technology is particularly suitable for parts with large cavities or challenging cantilevers

Software opens new 3D printing strategy

Timo Degen, Product Manager for Additive Manufacturing at TRUMPF, said: "When 3D printing a part, we want to be able to precisely control when and where the material melts and resolidifies. The key is to choose the right exposure strategy to prevent internal tension and overheating in the cantilever area." TruTops Print enables the 3D printer to use the best printing strategy for each different area of the part, eliminating the need for support structures. At the same time, the improved wind field of TrumPF's new 3D printer meets the requirements of uniform processing conditions and unsupported printing.

Figure 3: TruTops Print enables the 3D printer to use the optimal printing strategy for each different area of the part, eliminating the need for support structures

Unsupported 3D printing technology opens up new applications

Timo Degen, product manager for Additive Manufacturing at TRUMPF, notes that the propping-free printing technology is particularly suitable for challenging situations with large cavities or cantilever components, such as parts such as water tanks, heat exchangers, hydraulic blocks and molds. This new technology also opens up applications that were previously not fully utilized, including additively manufactured radial compressors and shroud impels. In the past, because of the impeller's cantilever Angle, manufacturers were unable to print impellers that did not require support. "The demand for support meant that 3D printing could not economically replace traditional manufacturing, but that has now changed," Degen said.

About TRUMpf

Trumpf is a high-tech company that provides manufacturing solutions in the field of machine tools and laser technology. The company drives digital connectivity in manufacturing through consulting, platform products and software, and TRUMPF is a technology and market leader in flexible sheet metal processing machines and industrial lasers.

In 2022/23, the company employed around 17,900 people and generated sales of 5.4 billion euros (preliminary figures). The TrumPF Group has more than 90 companies and is present in almost all European countries as well as in North America, South America and Asia. The company has production sites in Germany, France, the United Kingdom, Italy, Austria, Switzerland, Poland, the Czech Republic, the United States, Mexico and China.

Source: TRUMPF

Related Recommendations
  • The L4 Aton laser at Eli Beamlines achieves an output power of 5 petawatts

    According to the Extreme Light Infrastructure (ELI), the L4 ATON kilojoule laser at the ELI beamline facility in Dolní Břežany near Prague, Czech Republic, has achieved peak powers exceeding 5 petawatts (10¹⁵ W).The research institute stated: “This confirms that L4 can operate safely and reliably at this energy level, which is crucial for scaling up power and preparing for scientific experiments.”...

    10-28
    See translation
  • Improving chip level laser performance by suppressing noise

    For a long time, noise has been the main bottleneck restricting the performance improvement of microchip level Brillouin lasers. Now, researchers in Sydney have successfully overcome this challenge, making significant breakthroughs in the field of integrated photonics and developing an effective noise suppression method. This achievement makes it possible to generate extremely pure and ultra narro...

    12-01
    See translation
  • Panasonic has announced the launch of two new laser projectors

    Panasonic announced the launch of two new 1-Chip 4K DL laser projectors, the PT-REQ15 projector offering 15,000 lumens of brightness, while its counterpart, the PT-REZ15, offers 15,000 lumens of WUXGA resolution.The REQ15 uses Panasonic's Quad Pixel Drive, a two-axis pixel shift technology, to reproduce 4K images. It is capable of projecting 2K/240Hz content on multiple edge hybrid screens with a ...

    2023-09-07
    See translation
  • The market size of quantum cascade lasers is expected to reach 617.93 million US dollars by 2032

    The quantum cascade laser (QCL) market is maintaining stable growth globally. This trend is mainly due to the continuous advancement of technology, the expanding scope of industrial applications, and the increasing demand in multiple fields such as national defense, healthcare, and scientific research. In 2023, the market size has reached $416.85 million and is expected to grow to $617.93 million ...

    11-27
    See translation
  • Scientists have created a full spectrum white light laser with bright spot, smooth and flat spectrum, and large pulse energy characteristics

    Recently, the team led by Professor Li Zhiyuan from South China University of Technology has successfully developed a full spectrum white light laser, which has the characteristics of bright spot, smooth and flat spectrum, and large pulse energy. It can cover the ultraviolet visible infrared full spectrum of 300-5000nm, with a single pulse energy of 0.54mJ.The launch of such a full spectrum white ...

    2023-11-07
    See translation