English

Experimental verification of driving pressure enhancement and smoothing for hybrid driven inertial confinement fusion on a 100 kJ laser device

1142
2023-09-25 16:35:30
See translation

The research teams from the Laser Fusion Research Center of the Chinese Academy of Engineering Physics, the Beijing Institute of Applied Physics and Computational Mathematics, Peking University, and Shenzhen University of Technology reported experimental verification of the driving pressure enhancement and smoothing of hybrid driven inertial confinement fusion on a 100 kJ laser equipment.

The relevant research was published in the journal Nature Communications under the title of "Experimental confirmation of driving pressure boosting and smoothing for hybrid drive internal fusion at the 100 kJ laser facility".

The main purpose of laser driven inertial confinement fusion (ICF) is for fusion energy, defense applications, and high energy density physics research. The research on the ignition and combustion of deuterium tritium fuel has a history of decades, using two schemes: indirect drive (ID) and direct drive (DD), which use high-temperature ablation pressure to drive implosion.

Laser driven inertial confinement fusion (ICF) is an important way to convert laser energy into driving pressure implosion compressed fuel, ignite and burn under the support of fuel motion inertia, and obtain fusion energy.

Figure 1: Schematic diagram of ignition target, DD laser power (red) and ID laser conversion radiation temperature Tr (black).
Therefore, in laser driven inertial confinement fusion, improving and smoothing the driving pressure is a major challenge. Once such pressure is obtained, ignition targets can be designed to achieve stable implosion and ignition.

Figure 2: Schematic diagram of HD experiment.
The hybrid drive (HD) scheme proposed by the research team can provide ideal HD pressure, thereby achieving stable implosion and non stagnation ignition.

The article reports that a peak radiation temperature of 200 ± 6 eV was achieved in a semi cylindrical thermal cavity shrunk from the spherical thermal cavity of the designed ignition target in both hemispherical and planar ablation targets under an indirect driving (ID) laser energy of 43-50 kJ.

Figure 3: Radiation temperature and impact velocity.
Figure 4: one-dimensional simulation results under experimental parameters

And only using direct drive (DD) laser energy of 3.6-4.0 kJ and 1.8 ×  The laser intensity of 1015 W/cm2, the enhanced HD pressure of hemispherical and planar targets reached 3.8-4.0 and 3.5-3.6 times the radiation ablation pressure, respectively.

In all the experiments mentioned above, it has been demonstrated that the significant phenomena of HD pressure smoothing and symmetric strong HD impact suppress asymmetric ID impact compression of fuel. In addition, backscattering and hot electron energy fractions were measured, both of which were approximately one-third of the DD scheme.

Figure 5: Measurement of DD laser plasma interaction.
The experimental results well demonstrate that the high-density scheme can provide a smooth high-density pressure that is much greater than the radiation ablation pressure. By utilizing the fitting proportional relationship between HD pressure and laser energy, the proportional driving pressure for stable implosion and non stagnant ignition is very consistent, with an error of about 15%. This provides an important reference for the design of high gain ignition targets.

The experimental results confirm the key effects of the HD scheme, providing an effective way for ICF to stabilize implosion and high fusion energy.

Related paper links:
Yan, J., Li, J., He, X.T. et al. Experimental confirmation of driving pressure boosting and smoothing for hybrid drive imperial fusion at the 100-kJ laser facility Nat Commun 14, 5782 (2023) https://doi.org/10.1038/s41467-023-41477-2

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    See translation
  • The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

    Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.The Laser Energy Laboratory (LLE) at the University of Rochester is one of the...

    2023-10-26
    See translation
  • Swiitol Launches E24 Pro: A Breakthrough in Laser Engraving Technology

    In order to completely change the world of laser engraving, Swiitol has launched the E24 Pro, a 24W integrated laser engraving machine with cutting-edge features and functions. The Swiitol E24 Pro showcases an innovative integrated structure laser engraving machine made of durable aluminum alloy. It is worth noting that the device can be used out of the box without installation, providing users wi...

    2023-11-23
    See translation
  • Scientists have developed a palm sized femtosecond laser using a glass substrate

    Researchers at the Federal College of Technology in Lausanne (EPFL) have shown that femtosecond lasers suitable for palm size can be manufactured using glass substrates.Can femtosecond lasers made entirely of glass become a reality? This interesting question prompted Yves Bellouard, the head of the Galata laboratory at the Federal Institute of Technology in Lausanne, to embark on a journey after y...

    2023-10-04
    See translation
  • QBeam launches innovative window ablation laser system to achieve free space optical communication

    QBeam is a leader in developing breakthrough optical products and announced today that its handheld laser ablation equipment is fully launched for free space optical communication in indoor office locations. The qBeam window ablation laser allows for the installation of optical communication terminals indoors by treating windows that otherwise block the infrared beams of the terminals.Commercial b...

    2024-02-15
    See translation