English

Experimental verification of driving pressure enhancement and smoothing for hybrid driven inertial confinement fusion on a 100 kJ laser device

1211
2023-09-25 16:35:30
See translation

The research teams from the Laser Fusion Research Center of the Chinese Academy of Engineering Physics, the Beijing Institute of Applied Physics and Computational Mathematics, Peking University, and Shenzhen University of Technology reported experimental verification of the driving pressure enhancement and smoothing of hybrid driven inertial confinement fusion on a 100 kJ laser equipment.

The relevant research was published in the journal Nature Communications under the title of "Experimental confirmation of driving pressure boosting and smoothing for hybrid drive internal fusion at the 100 kJ laser facility".

The main purpose of laser driven inertial confinement fusion (ICF) is for fusion energy, defense applications, and high energy density physics research. The research on the ignition and combustion of deuterium tritium fuel has a history of decades, using two schemes: indirect drive (ID) and direct drive (DD), which use high-temperature ablation pressure to drive implosion.

Laser driven inertial confinement fusion (ICF) is an important way to convert laser energy into driving pressure implosion compressed fuel, ignite and burn under the support of fuel motion inertia, and obtain fusion energy.

Figure 1: Schematic diagram of ignition target, DD laser power (red) and ID laser conversion radiation temperature Tr (black).
Therefore, in laser driven inertial confinement fusion, improving and smoothing the driving pressure is a major challenge. Once such pressure is obtained, ignition targets can be designed to achieve stable implosion and ignition.

Figure 2: Schematic diagram of HD experiment.
The hybrid drive (HD) scheme proposed by the research team can provide ideal HD pressure, thereby achieving stable implosion and non stagnation ignition.

The article reports that a peak radiation temperature of 200 ± 6 eV was achieved in a semi cylindrical thermal cavity shrunk from the spherical thermal cavity of the designed ignition target in both hemispherical and planar ablation targets under an indirect driving (ID) laser energy of 43-50 kJ.

Figure 3: Radiation temperature and impact velocity.
Figure 4: one-dimensional simulation results under experimental parameters

And only using direct drive (DD) laser energy of 3.6-4.0 kJ and 1.8 ×  The laser intensity of 1015 W/cm2, the enhanced HD pressure of hemispherical and planar targets reached 3.8-4.0 and 3.5-3.6 times the radiation ablation pressure, respectively.

In all the experiments mentioned above, it has been demonstrated that the significant phenomena of HD pressure smoothing and symmetric strong HD impact suppress asymmetric ID impact compression of fuel. In addition, backscattering and hot electron energy fractions were measured, both of which were approximately one-third of the DD scheme.

Figure 5: Measurement of DD laser plasma interaction.
The experimental results well demonstrate that the high-density scheme can provide a smooth high-density pressure that is much greater than the radiation ablation pressure. By utilizing the fitting proportional relationship between HD pressure and laser energy, the proportional driving pressure for stable implosion and non stagnant ignition is very consistent, with an error of about 15%. This provides an important reference for the design of high gain ignition targets.

The experimental results confirm the key effects of the HD scheme, providing an effective way for ICF to stabilize implosion and high fusion energy.

Related paper links:
Yan, J., Li, J., He, X.T. et al. Experimental confirmation of driving pressure boosting and smoothing for hybrid drive imperial fusion at the 100-kJ laser facility Nat Commun 14, 5782 (2023) https://doi.org/10.1038/s41467-023-41477-2

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Advanced OPA enhances the energy of attosecond imaging ultra short pulses

    The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond ...

    2024-05-11
    See translation
  • Emerson launches a new type of laser welding machine that can efficiently and flexibly process medical precision components

    Recently, Emerson, the global leader in industrial automation, launched the all-new Branson ™ The GLX-1 laser welding machine, with its outstanding flexibility and innovative technology, accurately meets the urgent market demand for connecting small, complex or delicate plastic components. Its compact volume and modular design make it easy to integrate into the ISO-8 cleanroom environment, while t...

    2024-06-04
    See translation
  • Coherent and Faraday sign a partnership to expand the manufacturing scale of high-temperature superconducting (HTS) tapes

    Recently, American photonics giant Coherent and Japan's Faraday 1867 Holdings signed a Letter of Intent (LOI), with the goal of expanding the manufacturing scale of high-temperature superconducting (HTS) tapes to be widely used in large-scale deployment of nuclear fusion reactors, while also promoting the transformation of green energy. Coherent's excimer laser is expected to be more widely used i...

    2023-10-12
    See translation
  • Low noise! Switzerland develops a new type of laser

    According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.Small laser system (I...

    2024-07-03
    See translation
  • Alcon acquires ophthalmic laser equipment company for $466 million

    On July 3rd local time, Swiss ophthalmic care giant Alcon announced the acquisition of Israeli medical technology company Belkin Vision and its laser equipment assets for treating glaucoma.The transaction includes a prepayment of $81 million, of which approximately $65 million is in cash. In addition, if Alcon can establish this technology as the preferred first-line treatment option for clinical ...

    2024-07-09
    See translation