English

A new type of electrically driven organic semiconductor laser can be used in the fields of spectroscopy, metrology, and sensing

1203
2023-10-07 16:48:45
See translation

According to a report from Maims Consulting, scientists at the University of St. Andrews in the UK recently stated that they have made a "significant breakthrough" in the decades of challenges in developing compact organic semiconductor laser technology. 

Firstly, an OLED with a world record light output was manufactured, and then integrated with a polymer laser structure. This new type of laser emits a green laser beam composed of short light pulses.

Structure of electrically driven organic semiconductor lasers
The paper published in the journal Nature explains how the research team at the University of St. Andrews overcomes common organic semiconductor problems such as low current density and intolerable losses caused by injecting charges into the gain medium.
The paper points out that "researchers have achieved loss reduction by developing an integrated device structure that effectively combines OLEDs with extremely high internal light generation capabilities with polymer distributed feedback lasers. Under the electrical driving of the integrated structure, the threshold of light output and driving current can be observed, with a narrow emission spectrum and the formation of a laser beam above the threshold.

The research results provide an organic electronic device that has never been proven before, and indicate that indirect electric pumping of OLEDs is a very effective method for achieving electrically driven organic semiconductor lasers. This provides a method for visible light lasers that can be applied in the fields of spectroscopy, metrology, and sensing.

The conclusion of the paper is: "Researchers have demonstrated an integrated device method that can achieve electrically driven lasers in organic semiconductors, thus solving an important challenge in organic optoelectronics. This method overcomes the main difficulties commonly encountered in direct electrical injection attempts of organic or hybrid perovskite lasers, while retaining operational advantages.

Original link:https://www.eet-china.com/mp/a256224.html

Source: MEMS, Breadboard Community - Core Language

Related Recommendations
  • Laser fusion breakthrough brings greater energy explosion

    Recently, scientists from the National Ignition Facility at Lawrence Livermore National Laboratory in California produced a burst of energy by bombarding hydrogen pellets with 192 laser beams, briefly reproducing the fusion process that powers the sun. This is a repeat of an experiment in December last year, but this time the scientists generated more energy, with a gain almost double that of the ...

    2023-09-26
    See translation
  • PsiQuantum completes $1 billion equity financing

    PsiQuantum, the Palo Alto startup at the forefront of photonics-based quantum computer development, says it will break ground on two manufacturing sites after closing a series E venture round that raised $1 billion.The new funding, led by private equity giant Blackrock and featuring several others including Nvidia’s venture capital wing, will enable the firm to build quantum computing sites in Bri...

    09-16
    See translation
  • Chip based comb laser illumination and unlocking of new applications

    Researchers have shown that dissipative Kerr solitons (DKS) can be used to create chip based optical frequency combs with sufficient output power for optical atomic clocks and other practical applications. This progress may lead to chip based instruments being able to perform precise measurements that were previously only possible in a few specialized laboratories.Gr é gory Moille from the ...

    2023-08-30
    See translation
  • Researchers have demonstrated a breakthrough boson sampling method using ultracold atoms in optical lattices

    JILA researcher, National Institute of Standards and Technology (NIST) physicist, physics professor Adam Kaufman and his team at the University of Colorado Boulder, as well as NIST collaborators, demonstrated a new method of cross laser beam lattice sampling using ultracold atoms for boson sampling in two-dimensional optics. This study, recently published in the journal Nature, marks a significant...

    2024-05-10
    See translation
  • Coherent develops borderless display cutting technology

    Coherent utilizes deep ultraviolet laser technology to study and improve the cutting process of displays, but the production of such displays is still very complex.Coherent, the host of the Mid-Europe Chapter Conference of the Society of Information Display (SID-MEC Conference) in Germany, has offered a look at its plans for improved display cutting. As a provider of laser solutions, the Göttingen...

    11-06
    See translation