English

A new type of electrically driven organic semiconductor laser can be used in the fields of spectroscopy, metrology, and sensing

1081
2023-10-07 16:48:45
See translation

According to a report from Maims Consulting, scientists at the University of St. Andrews in the UK recently stated that they have made a "significant breakthrough" in the decades of challenges in developing compact organic semiconductor laser technology. 

Firstly, an OLED with a world record light output was manufactured, and then integrated with a polymer laser structure. This new type of laser emits a green laser beam composed of short light pulses.

Structure of electrically driven organic semiconductor lasers
The paper published in the journal Nature explains how the research team at the University of St. Andrews overcomes common organic semiconductor problems such as low current density and intolerable losses caused by injecting charges into the gain medium.
The paper points out that "researchers have achieved loss reduction by developing an integrated device structure that effectively combines OLEDs with extremely high internal light generation capabilities with polymer distributed feedback lasers. Under the electrical driving of the integrated structure, the threshold of light output and driving current can be observed, with a narrow emission spectrum and the formation of a laser beam above the threshold.

The research results provide an organic electronic device that has never been proven before, and indicate that indirect electric pumping of OLEDs is a very effective method for achieving electrically driven organic semiconductor lasers. This provides a method for visible light lasers that can be applied in the fields of spectroscopy, metrology, and sensing.

The conclusion of the paper is: "Researchers have demonstrated an integrated device method that can achieve electrically driven lasers in organic semiconductors, thus solving an important challenge in organic optoelectronics. This method overcomes the main difficulties commonly encountered in direct electrical injection attempts of organic or hybrid perovskite lasers, while retaining operational advantages.

Original link:https://www.eet-china.com/mp/a256224.html

Source: MEMS, Breadboard Community - Core Language

Related Recommendations
  • The laser direct writing lithography equipment market is expected to reach $160.25 million in 2029 with a compound growth rate of 5.21%

    Lithography machine is the key equipment for making high precision mask plate. Using a very fine laser beam, the highly precise line pattern is drawn on the mask substrate under the control of an extremely precise automatic control system.Laser direct writing is to use a laser beam with variable intensity to implement variable dose exposure on the resist material (photoresist) on the subst...

    2023-08-04
    See translation
  • The fourth CEO of this laser giant takes over strongly

    According to the latest news, on June 3, 2024, Coherent Corp. appointed Jim Anderson as CEO and he will also become a member of the board, replacing Vincent "Chuck" Mattera.Image source: CoherentAnderson (left) Mattera (right)Dr. Vincent "Chuck" D. Mattera, Jr. previously notified the Coherent Board of Directors on February 20, 2024, stating that he would resign from the position of CEO upon his ...

    2024-06-07
    See translation
  • University of Würzburg creates' world's smallest pixel '

    The emergence of smart glasses is a product of the new era of technology and is widely regarded as a key technology for the future. However, due to technological limitations, applications are also restricted. In addition, if the size of high-efficiency luminescent pixels is reduced to the wavelength of emitted light, their use will also be limited by traditional optics.Now, physicists at Julius-Ma...

    10-29
    See translation
  • A research team from the University of Chicago in the United States has demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs)

    According to reports, a research team at the University of Chicago in the United States recently demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs), which may open up new applications for mid infrared light sources.Colloidal quantum dots are a type of semiconductor nanocrystal material that provides a promising approach for the synthesis of light sourc...

    2023-09-21
    See translation
  • SPIE Optics and Photonics 2025: Plenary Session Evaluation of Organic Materials for Optoelectronics

    The use of organic materials in photonics has given rise to many device innovations for applications in sensing, semiconductors, lasers, and more. The Organic Photonics + Electronics plenary session at SPIE Optics + Photonics 2025, taking place through 7 August in San Diego, California, sampled some current research efforts in this subfield, and looked at developments on the horizon.Ruth Shinar d...

    08-06
    See translation