English

A new type of electrically driven organic semiconductor laser can be used in the fields of spectroscopy, metrology, and sensing

1205
2023-10-07 16:48:45
See translation

According to a report from Maims Consulting, scientists at the University of St. Andrews in the UK recently stated that they have made a "significant breakthrough" in the decades of challenges in developing compact organic semiconductor laser technology. 

Firstly, an OLED with a world record light output was manufactured, and then integrated with a polymer laser structure. This new type of laser emits a green laser beam composed of short light pulses.

Structure of electrically driven organic semiconductor lasers
The paper published in the journal Nature explains how the research team at the University of St. Andrews overcomes common organic semiconductor problems such as low current density and intolerable losses caused by injecting charges into the gain medium.
The paper points out that "researchers have achieved loss reduction by developing an integrated device structure that effectively combines OLEDs with extremely high internal light generation capabilities with polymer distributed feedback lasers. Under the electrical driving of the integrated structure, the threshold of light output and driving current can be observed, with a narrow emission spectrum and the formation of a laser beam above the threshold.

The research results provide an organic electronic device that has never been proven before, and indicate that indirect electric pumping of OLEDs is a very effective method for achieving electrically driven organic semiconductor lasers. This provides a method for visible light lasers that can be applied in the fields of spectroscopy, metrology, and sensing.

The conclusion of the paper is: "Researchers have demonstrated an integrated device method that can achieve electrically driven lasers in organic semiconductors, thus solving an important challenge in organic optoelectronics. This method overcomes the main difficulties commonly encountered in direct electrical injection attempts of organic or hybrid perovskite lasers, while retaining operational advantages.

Original link:https://www.eet-china.com/mp/a256224.html

Source: MEMS, Breadboard Community - Core Language

Related Recommendations
  • Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

    According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.It is not that the laser has been achieved, as the research project aims to cha...

    2024-01-04
    See translation
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    See translation
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    See translation
  • Ring Laser Accuracy: Unprecedented Daily Measurement and Mapping of Earth's Rotation

    Scientists at the Technical University of Munich have made significant progress in measuring the Earth's rotation with unprecedented accuracy. Now, the ring laser from the Wettzell Geodetic Observatory can be used to capture data at a quality level unmatched anywhere in the world. These measurements are crucial for determining the position of the Earth in space, assisting climate research, and imp...

    2023-11-14
    See translation
  • Tower and Fortsense have announced the launch of their highly advanced 3D imager for LiDAR

    Recently, Gaota Semiconductor announced the successful development of an advanced 3D imager based on dToF technology for LiDAR applications. The newly developed product FL6031 is based on Tower's 65nm Stacked BSI CIS platform and has pixel level hybrid bonding function. It is the first in a series of products aimed at meeting the needs of numerous deep sensing applications in the automotive, consu...

    2023-09-14
    See translation