English

NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

140
2023-10-13 14:58:45
See translation

Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.

These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and teachers from Syracuse University played a leading role in this major discovery. Although members of the university's gravitational wave group spent some time celebrating this incredible feat, they immediately began to think about how to build a new observatory that would enable them to explore more regions of the universe using gravitational waves.

The Space Explorer is the next generation gravitational wave observatory designed by the Center for Gravitational Wave Astronomy and Astrophysics (CGWAA) at Syracuse University. CGWAA was established this autumn as a center for university students and teachers, playing a major role in the design and operation of the Gravity Wave Observatory. The CGWAA team collaborated with scientists from Massachusetts Institute of Technology, Pennsylvania State University, California State University at Fullerton, and the University of Florida, hoping that the Space Explorer could begin exploring the universe in the mid-1930s.

In order to properly view the functionality of Cosmic Explorer, Advanced LIGO has detected approximately 100 black hole collisions since 2015, while Cosmic Explorer will be able to detect every collision in the visible universe - approximately 100000 times a year, or every five minutes. Space explorers will also see about one million neutron stars merging each year, enabling scientists to understand the properties of nuclear matter and the production of heavy elements.

Gravity wave detectors, such as the Space Explorer, are large interferometers. Interferometry is an extremely sensitive measurement technique that uses mirrors, laser beams, and interference (the addition or removal of combined beams) to measure the displacement of mirrors caused by gravitational wave patterns. Advanced detectors help researchers map black holes in the universe, which was previously impossible to achieve with telescopes because unlike stars, black holes do not produce light.

In October 2022, Cosmic Explorer project partners gathered at the Minnobrook Convention Center at Syracuse University to hold a proposal writing seminar, which received over $9 million in federal funding for the project. As part of the NSF commitment, Syracuse University will receive funding of $1.64 million over the next three years.

Recently, researchers from the School of Arts and Sciences who received funding for the Cosmic Explorer project include Stefan Ballmer, a professor of physics and founding director of CGWAA; Georgia Mansell, Assistant Professor of Physics; Craig Cahillane, Professor of Physics Research; Professor Josh Russell and Professor Christopher Scholz from the Department of Earth and Environmental Sciences, whose funding will involve the site evaluation of the proposed observatory.

Without the support of the National Science Foundation, this important task would not have been possible, "Ballmer said. When we established the Center for Gravitational Wave Astronomy and Astrophysics, our idea was to strengthen Syracuse University's position as a pioneer in the field of gravitational wave detection. The awards presented by NSF confirm this commitment and will make the center a key participant in promoting the success of the Space Explorer project.

Source: Laser Network

Related Recommendations
  • Google works with magic leap on AR optics and manufacturing

    In the 2010s, Magic leap is one of the most hyped augmented reality companies, with a lot of money, including from Google. When the magic leap one headset was introduced in 2018, it was not a technological breakthrough in display technology that was once derided. Since then, Magic leap has persevered and has now signed a "multifaceted strategic technology partnership" with Google.Google announced ...

    2024-05-31
    See translation
  • Shandong Zhancheng Intelligent Manufacturing Laser Cutting Equipment is Popular Overseas

    The high-end laser cutting machine developed and produced by Dongying Lijin Zhancheng Laser Intelligent Manufacturing Company has become popular in overseas markets this spring. This equipment can not only use laser to quickly cut steel, but also freely swing on steel, "showing" beautiful pictures. The laser travels like a paintbrush flying, and the hard steel plate has been hollowed out into be...

    03-21
    See translation
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    See translation
  • Petrobras will use laser beams to measure wind speed and direction

    Petrobras announced last week that it plans to use laser beams to measure wind speed and direction. The idea is that these data will be used to improve the operation of the wind turbines maintained by this state-owned company in North Rio Grande do.The total investment of the 2.0 version of this device reaches R $11.3 million, known as the offshore wind assessment remote buoy.This technology can a...

    2023-10-24
    See translation
  • Accurate measurement of neptunium ionization potential using new laser technology

    Neptunium is the main radioactive component of nuclear waste, with a complex atomic structure that can be explored through mass spectrometry. This analysis is crucial for understanding its inherent characteristics and determining the isotopic composition of neptunium waste. Magdalena Kaja and her team from Johannes Gutenberg University in Mainz, Germany have developed a novel laser spectroscopy te...

    2024-05-11
    See translation