English

Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

1095
2023-10-14 10:22:56
See translation

Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "Absolute measurement of focusing properties of a large aperture diffractive lens".

Compared to reflective focusing lenses, diffractive optical elements are designed flexibly, have a large aperture, are lightweight, suitable for various wavebands, and can achieve complex optical functions. Photonic sieves and zone plates are typical representatives of diffractive lenses. Considering that diffraction elements are composed of a large number of microstructures, deviations are inevitable during the machining process, so performance calibration is necessary before use.

In this study, researchers used the natural background light of a large aperture diffractive lens as a reference and entered the shear interference system together with the focused beam. Based on the interference pattern recorded by the detector, the wavefront gradient of the focused beam relative to the background light is first obtained using Fourier analysis, and then the transmitted wavefront is reconstructed using the mode method. Finally, the focal length and focal spot morphology of the diffractive lens are numerically calculated. The experimental results of a 210mm aperture diffractive lens meet theoretical expectations. Ultra large aperture zone plates and photon sieves can be used for space interferometric telescopes. The self supporting beam splitting photon sieve is suitable for focusing imaging of EUV and soft X-ray. Multi focal photon sieves can be used for X-ray interference diagnosis of plasma.

This work was supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences' pilot A program.

Figure 1. Measurement Optical Path of Large Aperture Diffractive Lens

Figure 2. Experimental results of self-developed shear interferometer and measurement

Source: Shanghai Institute of Optics and Mechanics

Related Recommendations
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    See translation
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    See translation
  • Two Enterprises Collaborate to Overcome Optical Pollution in Vacuum Laser Welding

    Cambridge Vacuum Engineering (CVE), a precision welding equipment company in the UK, and Cranfield University recently announced that they have successfully reached a Knowledge Transfer Partnership (KTP), which will provide global engineers with more welding options.In this cooperation, both parties jointly solved the optical pollution problem in vacuum laser welding, paving the way for the compre...

    2024-02-03
    See translation
  • 10.30 Shenzhen Munich South China Laser Exhibition awaits you

    The Munich South China Laser Exhibition is about to open!As a member exhibition of the South China International Intelligent Manufacturing, Advanced Electronics, and Laser Technology Expo (referred to as "LEAP Expo"), it will be held from October 30 to November 1, 2023 at the Shenzhen International Convention and Exhibition Center (Bao'an New Hall) in conjunction with the Munich South China Elect...

    2023-10-26
    See translation
  • Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

    Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect...

    2023-12-22
    See translation