English

Scientists are using lasers to create lunar paving blocks

1176
2023-10-14 10:46:24
See translation

Original Hal Bowman 9000 Scientific Razor
The 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAM

By using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these experiments were conducted on Earth using alternatives to lunar dust, these findings demonstrate the feasibility of the technology and indicate that it can be replicated on the moon. However, according to the author, further work may be needed to improve this process.

Lunar dust poses a significant challenge to lunar rovers, as due to low gravity levels, they often float around and may damage equipment when disturbed. Therefore, infrastructure such as roads and landing pads is crucial for alleviating dust problems and promoting lunar transportation. However, the cost of transporting building materials from Earth is high, making the use of available resources on the moon crucial.

Gin é s Palomares, Miranda Fateri, and Jens G ü nster used carbon dioxide lasers to melt a fine-grained material called EAC-1A (developed by ESA as a substitute for lunar soil) to simulate how lunar dust melts into solid matter through focused solar radiation on the moon.

The author attempted laser beams of different intensities and sizes (up to 12 kW and 100 mm respectively) to create sturdy materials, although they determined that intersecting or overlapping laser beam paths could lead to cracking. They developed a strategy to use a laser beam with a diameter of 45 millimeters to generate a triangular, hollow geometric shape about 250 millimeters in size. The author suggests that these can be interlocked to form a sturdy surface on a large area of lunar soil, which can serve as roads and landing pads.

Rendered images of roads and landing pads paved on the lunar surface. Source: Liquifer Systems Group


In order to reproduce this method on the moon, the author calculated that approximately 2.37 square meters of lenses need to be transported from Earth to replace lasers as solar concentrators. The relatively small equipment size required will be an advantage for future lunar missions.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Luxiner launches LXR ultra short pulse laser platform

    Luxiner, the global leader in laser technology, has launched LXR ® The ultra short pulse (USP) laser platform is a revolutionary leap in industrial laser processing. The LXR platform provides unparalleled performance, versatility, and reliability, making significant progress in burst mode processing. Micro Miracle MasterThe world of miniaturization is flourishing due to the continuous improvemen...

    2024-06-11
    See translation
  • Veeco's Laser Pulse Annealing (LSA) System Selected for DRAM Evaluation

    Veeco Instruments Inc. (NASDAQ: VECO) announced today that it has delivered its Laser Spike Annealing (LSA) system to a leading semiconductor memory company for evaluation by its advanced DRAM development team. This progress not only expands Veeco's business territory in the DRAM market, but also signifies a key advancement in the development of mass production technology for next-generation DRAM ...

    3 days ago
    See translation
  • Scientists Developing New Low Cost Manufacturing Technologies for High Resolution Optical Components

    Scientists from Leibniz University in Hanover have pioneered the development of a new manufacturing technology - UV LED based microscopy projection lithography. This technology is expected to completely change the manufacturing method of optical components, providing high resolution at lower cost and ease of use. The MPP system utilizes the power of UV LED light sources to transcribe the structura...

    2024-01-06
    See translation
  • Scientists develop photo activated glass for clean energy production

    Japanese and Swiss scientists have collaborated to develop glass that can generate electricity under light, which may pave the way for sustainable energy production. Researchers from Tokyo Institute of Technology and the Swiss Federal Institute of Technology in Lausanne used femtosecond lasers to etch circuits on glass surfaces, resulting in the unexpected generation of semiconductor crystals.The ...

    2024-03-11
    See translation
  • Han's Laser's net profit in the third quarter decreased by 45.37% year-on-year

    Recently, Han's Laser released a third quarter report, stating that the company achieved a revenue of 3.301 billion yuan in the third quarter, a year-on-year decrease of 8.96% (after adjustment); The net profit attributable to shareholders of the listed company was 209 million yuan, a year-on-year decrease of 45.37% (after adjustment).During the reporting period, the company's operating profit, to...

    2023-10-25
    See translation