English

Scientists are using lasers to create lunar paving blocks

1131
2023-10-14 10:46:24
See translation

Original Hal Bowman 9000 Scientific Razor
The 3 kW laser power output on a 45 mm laser spot consolidates the interlocking structure within the EAC-1A powder bed. Source: Jens Kinst, BAM

By using lasers to melt lunar soil into stronger layered materials, it is possible to build paved roads and landing pads on the moon, according to a concept validation study in a scientific report. Although these experiments were conducted on Earth using alternatives to lunar dust, these findings demonstrate the feasibility of the technology and indicate that it can be replicated on the moon. However, according to the author, further work may be needed to improve this process.

Lunar dust poses a significant challenge to lunar rovers, as due to low gravity levels, they often float around and may damage equipment when disturbed. Therefore, infrastructure such as roads and landing pads is crucial for alleviating dust problems and promoting lunar transportation. However, the cost of transporting building materials from Earth is high, making the use of available resources on the moon crucial.

Gin é s Palomares, Miranda Fateri, and Jens G ü nster used carbon dioxide lasers to melt a fine-grained material called EAC-1A (developed by ESA as a substitute for lunar soil) to simulate how lunar dust melts into solid matter through focused solar radiation on the moon.

The author attempted laser beams of different intensities and sizes (up to 12 kW and 100 mm respectively) to create sturdy materials, although they determined that intersecting or overlapping laser beam paths could lead to cracking. They developed a strategy to use a laser beam with a diameter of 45 millimeters to generate a triangular, hollow geometric shape about 250 millimeters in size. The author suggests that these can be interlocked to form a sturdy surface on a large area of lunar soil, which can serve as roads and landing pads.

Rendered images of roads and landing pads paved on the lunar surface. Source: Liquifer Systems Group


In order to reproduce this method on the moon, the author calculated that approximately 2.37 square meters of lenses need to be transported from Earth to replace lasers as solar concentrators. The relatively small equipment size required will be an advantage for future lunar missions.

Source: Yangtze River Delta Laser Alliance

Related Recommendations
  • Laser communication is expected to completely change optical links

    Laser technology is becoming a game changer in the field of satellite communication (SATCOM), capable of creating ultra secure networks that can transmit large amounts of data at unprecedented speeds through satellite networks and constellations.With continuous progress, the industry is ready for growth and collaboration, seizing the untapped potential of disconnected populations. The ability to h...

    2023-09-20
    See translation
  • New laser technology can achieve more efficient facial recognition

    Recently, the latest research report from FLEET, an interdisciplinary research team in Australia, revealed a significant leap in laser technology, achieving unprecedented levels of spectral purity.Spectral purity, which refers to the degree of matching of a single light frequency (or color) generated by a laser, is an important indicator for measuring laser performance. By using a scanning Fabry P...

    2024-06-24
    See translation
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    See translation
  • Narrow band tunable terahertz lasers may change material research and technology

    A group of researchers from the Max Planck Institute for Material Structure and Dynamics in Germany explored the effect of manipulating the properties of quantum materials far from equilibrium through customized laser drivers. They found a more effective method to create previously observed metastable superconducting states in fullerene based materials using lasers.By tuning the light source to 10...

    2023-11-21
    See translation
  • Innovating Photonics: Lithium Tantalate Provides Power for the Next Generation of Optoelectronic Circuits

    The new photonic integrated circuit technology based on lithium tantalate has improved cost efficiency and scalability, making significant progress in the fields of optical communication and computing.The rapid development of photonic integrated circuits (PICs) has revolutionized optical communication and computing systems, combining multiple optical devices and functions on a single chip.For deca...

    2024-05-14
    See translation