English

Research Progress in High Efficiency Supercontinuum Spectra in Specific Wavebands Made by Shanghai Optics and Machinery High Power Laser Unit Technology Laboratory

123
2023-10-17 14:20:46
See translation

Recently, the High Power Laser Unit Technology Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in research on high efficiency supercontinuum in specific bands. The relevant research results were published in the Journal of Lightwave Technology under the title of "Strong Anti Stokes and flat supercontinuum in specified band based on non generated Raman four wave mixing module".

The generation of supercontinuum spectrum is due to the coupling effect of dispersion and a large number of nonlinear effects, resulting in extremely wide spectral expansion. Due to its advantages such as wide bandwidth and high brightness, supercontinuum spectroscopy provides ultra wide light sources for many studies and has been applied in various fields such as microscopic living cell imaging, optical coherence tomography, and hyperspectral radar imaging. Supercontinuum spectra typically have widths of one to several octaves.

However, in practical applications, a very wide spectrum is not required. Considering that the spectrum of useless bands is a waste of energy, reduces efficiency, and leads to additional optical damage, it is necessary to achieve a wide and flat spectrum in specific bands. Customizing the shape of supercontinuum spectrum according to needs and limiting the spectrum to the band of interest has always been a controversial and difficult problem in supercontinuum spectrum research.

This study proposes a specific band flattened supercontinuum spectral method based on non degenerate Raman four wave mixing modulation. By controlling the dispersion of photonic crystal fibers and the peak power of the pump light, the gain of non degenerate Raman four-wave mixing is located in the required frequency bands for various application scenarios. This provides a new method for achieving supercontinuum spectra with broadband and high spectral intensity in the shortwave rectangular direction. Through this method, we developed a near-infrared flat supercontinuum spectrum with a spectral intensity of 3dB corresponding to a bandwidth of 420nm at the center wavelength of 800nm.

In addition, the relative intensity of anti Stokes light is 75.2%, and 49.6% of the total spectral energy is concentrated in the 610-1030 nm band, which provides a more effective light source for optical coherence tomography scanning. Using this supercontinuum spectrum as the light source for OCT can greatly improve axial resolution.

Figure 1 (a) Supercontinuum spectral spectra of pumps at different powers
(b) High efficiency ultra flat supercontinuum spectroscopy

Source: China Optical Journal Network

Related Recommendations
  • Shanghai Optical Machine has made progress in frequency shift of even harmonic of single layer MoS2

    Recently, the research team of the State Key Laboratory of High-Field Laser Physics at the Shanghai Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made progress in using high-field lasers to drive the even harmonic frequency shift of single-layer MoS2. The results were published in Optics Express under the title "Frequency shift of even-order high harmonic generation...

    2023-09-07
    See translation
  • DR Laser releases its 2024 semi annual report, achieving dual growth in revenue and profit

    A few days ago, DR laser released 2024 half-yearly report, the company realized operating income of 906 million yuan in the first half of the year, a year-on-year increase of 34.40%; net profit of 236 million yuan, a year-on-year increase of 35.51%. For the reasons of performance growth, DR laser said in the half-yearly report, the company's first half of the order continued to acceptance brough...

    2024-08-23
    See translation
  • Advancing Astronomy: Using Laser Guided Star Adaptive Optics to Obtain clearer celestial views

    Adaptive optics is defined as an advanced optical system used to correct the transmission medium between the subject and the image, providing users with clearer images. Adaptive optics helps to use a complex combination of deformable mirrors to correct images in real-time through distortion in the Earth's atmosphere. These images are of greater importance in many vertical industries such as health...

    2024-02-22
    See translation
  • New EUV lithography technology is introduced: achieving significant cost reduction and efficiency improvement

    Recently, Professor Tsumoru Shintake from Okinawa University of Science and Technology (OIST) proposed a revolutionary extreme ultraviolet (EUV) lithography technology that not only surpasses the boundaries of existing semiconductor manufacturing, but also heralds a new chapter in the industry's future.This innovation significantly improves stability and maintainability, as its simplified design o...

    2024-08-07
    See translation
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    See translation