English

NASA Completely Transforms Laser Communication and Space Weather Research

1141
2023-10-23 14:38:12
See translation

NASA is a pioneer in space research, once again attracting the attention of the world with fascinating insights. In a recent press release, NASA announced plans to test revolutionary laser communication systems and study the interaction between Earth and space weather.

A Great Leap in Space Communication: ILLUMA-T
The SpaceX 29 mission, scheduled for November 5th, will conduct research and technical experiments on the International Space Station (ISS), including integrated laser communication relay demonstrations of low Earth orbit user modems and amplifier terminals (ILLUMA-T). Once installed outside the space station, ILLUMA-T will test high-speed laser communication between the space station and NASA's laser communication relay demonstration in geosynchronous orbit.

Unlike traditional RF systems, this innovation uses invisible infrared light to achieve faster data transmission rates. This breakthrough marks an important milestone in the development of space communication and is expected to provide more efficient and fast data transmission for future missions.

Atmospheric Wave Experience (AWE)
Parallel to ILLUMA-T, another eye-catching experiment is being planned: the Atmospheric Wave Experiment (AWE). The AWE, also installed outside the International Space Station, will use infrared imaging instruments to measure the characteristics of atmospheric gravity waves. When the air is disturbed, these waves will pass through the Earth's atmosphere.

Studying these waves can provide a deeper understanding of the Earth's atmosphere, weather, and climate. It can also help develop methods to mitigate the impact of space weather, as it affects space-based and ground based communication, navigation, and tracking systems.

Meaningful cooperation
These projects are not just the result of NASA's work. This institution works closely with other well-known institutions. The ILLUMA-T project is managed by the Goddard Space Flight Center in collaboration with the Johnson Space Center and the Lincoln Laboratory at the Massachusetts Institute of Technology.

The Future of Space Research
With these advances, the International Space Station continues to strengthen its position as a world leading laboratory. The research conducted on ships not only benefits humans on Earth, but also lays the foundation for human and robot exploration of activities beyond low Earth orbit, including lunar and Mars missions.

These missions have strengthened NASA's reputation as a world leader in space research, paving the way for discoveries that may change our understanding of the universe.

Source: Laser Network

Related Recommendations
  • By 2030, the global market size of medical laser fiber will reach 1.369 billion US dollars

    According to a recent report by Congic Business Intelligence, the global medical laser fiber market is expected to grow significantly at a compound annual growth rate of 6.9% from 2023 to 2030. This growth is attributed to the increasing popularity of minimally invasive surgery worldwide.The medical laser fiber market is expected to expand strongly, reaching $1.369 billion by 2030. The market is v...

    2023-10-27
    See translation
  • Is CTC technology in the booming new energy industry likely to disrupt the fiber laser industry?

    Recently, the term CTC technology has become a hot topic in the new energy vehicle industry. During the relatively slow period of electrochemical innovation, this structural innovation effectively helped the new energy industry reduce costs and increase efficiency, while also increasing the range of new energy vehicles to a certain extent. However, recently the author learned that the concept of C...

    2023-09-18
    See translation
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    See translation
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    See translation
  • The LANL laboratory in the United States uses quantum light emitters to generate single photon light sources

    Recently, the Los Alamos National Laboratory (LANL) in the United States has developed a method for quantum light emitters, which stacks two different atomic thin materials together to achieve a light source that generates circularly polarized single photon streams. These light sources can also be used for various quantum information and communication applications.According to Han Htoon, a researc...

    2023-09-01
    See translation