English

It is expected that the global industrial laser system market size will reach 32.2 billion US dollars by 2028, and the Asia Pacific region's investment share in laser technology will continue to rise

115
2023-08-10 18:02:44
See translation

According to a latest overseas market research report, it is expected that the global industrial laser system market size will reach approximately 32.2 billion US dollars by 2028, with a compound annual growth rate of 8.3% from 2023 to 2028.

The future prospects of the global industrial laser system market are broad, with opportunities in numerous fields such as semiconductors and electronics, automobiles, aerospace and defense, as well as healthcare.

The main driving forces of this market include the continuous adoption of the Industrial Internet of Things, the increasing demand for material processing in various terminal industries, and the widespread application of various high-power laser products in production activities such as semiconductors, flat panel displays, lithium-ion batteries, LED for consumer electronics, and clean energy.

Industry analysts predict that fiber lasers will continue to be the largest product segment in the field of industrial laser systems during the forecast period.

Among numerous light source products, fiber lasers are highly favored for their excellent electro-optical conversion efficiency, excellent performance, minimal maintenance requirements, energy conservation and environmental protection, continuously expanding application scenarios, excellent beam quality, and higher stability.

In the future, the continuous pursuit of high efficiency, processing capability, and processing accuracy in industrial applications will drive fiber lasers towards higher brightness, higher power, and shorter pulses.

Equipped with corresponding intelligent and automation technologies, as well as unique processes and solutions, this mainstream industrial application laser will be applied in the power battery manufacturing, 3C, photovoltaic, 5G new infrastructure, rail transit, shipbuilding, aerospace, engineering machinery, and medical fields of the new energy vehicle industry, And many fields such as industrial processing (laser cutting, welding, marking, surface treatment, laser cleaning, laser cladding, additive manufacturing, etc.) have shone brightly, continuously contributing to the further transformation and upgrading of the manufacturing industry.

The application demand for fiber lasers is constantly penetrating into fields such as new energy, shipbuilding, rail transit, aerospace, 5G new infrastructure, engineering machinery, and industrial processing
In addition, due to the widespread use of lasers in semiconductor production and processing, precision micro processing fields such as semiconductors and electronics are expected to continue to be a significant niche application market.

On the one hand, the application of lasers in the semiconductor field is becoming increasingly widespread, including the manufacturing of semiconductor devices, semiconductor material processing, semiconductor testing, and other aspects.

Among them, the application of lasers in semiconductor device manufacturing is particularly prominent, which can be used for etching, photolithography, cleaning, annealing and other process steps.

In the processing of semiconductor materials, laser cutting, laser marking and other technologies have become mainstream, with advantages such as high precision, high efficiency, and non-contact. They are widely used in fields such as LED, solar cells, and semiconductor chips.

In semiconductor testing, laser has become an important detection tool, which can be used for material structure analysis, surface defect detection, crystal quality evaluation, and other aspects.

On the other hand, laser microfabrication is a rapidly developing field that is rapidly innovating the production processes of the entire industrial and scientific fields.

With the arrival of the era of high-end manufacturing, the application of precision and micro processing is a key direction of laser processing. Many industries such as microelectronics, 3C/5G, new materials, wearable electronic devices, medical equipment, aerospace, new energy vehicles, photovoltaic, OLED, and additive manufacturing, life sciences, scientific research, etc. have strong demand for laser precision processing.

From a regional perspective, in the next five years, due to the increasing investment share in the laser technology field in the Asia Pacific region, as well as the huge demand for industrial laser systems in various terminal industries such as metal processing, new energy, mechanical manufacturing, healthcare, and defense in the region, the Asia Pacific region will still become the largest market for industrial laser systems.

Source: Laser Manufacturing Network

Related Recommendations
  • Old brand laser manufacturers win major orders in the nuclear industry

    Recently, Laser Photonics Corporation (LPC) claims to have successfully secured an order from ES Fox Limited to provide them with the CleanTech 500-CTHD laser cleaning system.ES Fox Limited, founded in 1934, is recognized as a leader in the industrial manufacturing and construction industry in Canada. Its nuclear service department has invested millions of hours to support the nuclear power indust...

    2024-05-28
    See translation
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    See translation
  • Researchers have made breakthrough discoveries in the field of nanophotonics

    Researchers have made breakthrough discoveries in the field of nanophotonics. They have successfully developed a locked mode ultrafast laser using lithium niobium, a material known for its excellent optical properties. This breakthrough opens up new possibilities for revolutionary applications, including telecommunications, data storage, and ultra fast imaging.A mode-locked laser is a type of lase...

    2023-11-20
    See translation
  • Thales will provide laser payloads for Hellas Sat 5

    Hellas Sat, which holds a majority stake in Arabsat, has reached a memorandum of understanding with Thales Alenia Space to collaborate on the development of a luminous communication payload for an upcoming new mission that will be launched on the future Hellas Sat 5 telecommunications satellite, which will operate at 39 degrees east longitude.The partnership between Hellas Sat and Thales Alenia Sp...

    2024-01-30
    See translation
  • Ruifeng high power ultraviolet laser will become an indispensable tool in the production of thin film solar cells in the future

    With the rise of clean energy and the enhancement of environmental awareness, thin film solar cells are gradually replacing traditional silicon-based solar cells as an efficient energy conversion device.However, to achieve efficient solar cell conversion rates, the key is to ensure that thin film solar cells have clear edges and maximize light absorption. In this regard, the unique advantages of h...

    2023-09-08
    See translation