English

Researchers have proposed a new idea for quasi particle driven ultra bright light sources, which can be used in various applications from non-destructive imaging to chip manufacturing

528
2023-10-24 14:07:30
See translation

An international team of scientists is rethinking the fundamental principles of radiation physics, aiming to create ultra bright light sources. In a new study published in Nature Photonics, researchers from the Higher Institute of Technology in Lisbon, Portugal, the University of Rochester, the University of California, Los Angeles, and the Optical Applications Laboratory in France proposed the use of quasi particles to generate light sources, which are as powerful as the most advanced light sources today, but have much smaller volume scales.

Quasiparticles are formed by many synchronously moving electrons. They can move at any speed, even faster than light, and can withstand powerful forces similar to those near black holes.

The most fascinating thing about quasi particles is that they can move in ways that are not allowed by the laws of physics that control individual particles. The team studied the unique properties of quasi particles in plasma by running simulations on supercomputers provided by the European High Performance Computing Joint Project. They saw the application prospects of quasi particle based light sources, including non-destructive imaging for scanning viruses, understanding biological processes such as photosynthesis, manufacturing computer chips, and exploring the behavior of matter in planets and stars.

Researchers have stated that although each electron performs relatively simple motion, the total radiation of all electrons can simulate the radiation of particles moving faster than the speed of light, even if no local electron is faster than light or oscillating electrons.

Quasiparticle based light sources may have significant advantages over existing forms such as free electron lasers, as free electron lasers are scarce and large-scale, making them impractical for most laboratories, hospitals, and enterprises. According to the theory proposed by new research, quasi particles can generate incredibly bright light at short propagation distances, which may trigger widespread technological advancements in laboratories worldwide.

Source: Science and Technology Daily

Related Recommendations
  • Laser cleaning equipment manufacturer LPC receives multiple orders

    Recently, laser cleaning equipment manufacturer Laser Photonics Corporation (LPC) has disclosed multiple orders in a row.On December 26th, LPC received an order from Walsh Service Solutions to purchase a handheld laser cleaning equipment. It is understood that the manufacturer is purchasing CleanTech IR-3040, a high-performance handheld fiber laser cleaning device designed by LPC, mainly used for ...

    2024-12-31
    See translation
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".Figure 1. Demonst...

    2024-10-26
    See translation
  • German Jenoptik receives over 17 million euros in automation business orders

    Recently, Jenoptik, a leading German company in the field of optoelectronics, announced that the group successfully won multiple automation solution orders worth over 17 million euros in the second quarter of 2024.It is revealed that these orders originated from a first tier OEM supplier (unnamed) and were delivered by Prodomax, an automation expert under the group.As a member of the Yina Group (a...

    2024-06-18
    See translation
  • High precision laser linkage platform to help precision processing

    With the trend of industrial intelligence and precision processing, the demand for laser precision processing in precision 3C industry, machinery and equipment, new energy vehicles and other industries has developed rapidly, making the application of laser processing technology in the industrial field more comprehensive promotion.Due to the inherent nonlinear characteristics between optics and sca...

    2023-09-11
    See translation
  • Researchers have manufactured chip based optical resonators that can operate in the ultraviolet (UV) and visible light regions of the spectrum

    Figure: Researchers have created a chip based ring resonator that operates in the ultraviolet and visible light ranges and exhibits record low UV loss. The resonator (small circle in the middle) is displayed as blue light.Researchers have created chip based photonic resonators that can operate in the ultraviolet (UV) and visible regions of the spectrum and exhibit record low UV loss. The ne...

    2023-10-06
    See translation