English

Researchers have proposed a new idea for quasi particle driven ultra bright light sources, which can be used in various applications from non-destructive imaging to chip manufacturing

1220
2023-10-24 14:07:30
See translation

An international team of scientists is rethinking the fundamental principles of radiation physics, aiming to create ultra bright light sources. In a new study published in Nature Photonics, researchers from the Higher Institute of Technology in Lisbon, Portugal, the University of Rochester, the University of California, Los Angeles, and the Optical Applications Laboratory in France proposed the use of quasi particles to generate light sources, which are as powerful as the most advanced light sources today, but have much smaller volume scales.

Quasiparticles are formed by many synchronously moving electrons. They can move at any speed, even faster than light, and can withstand powerful forces similar to those near black holes.

The most fascinating thing about quasi particles is that they can move in ways that are not allowed by the laws of physics that control individual particles. The team studied the unique properties of quasi particles in plasma by running simulations on supercomputers provided by the European High Performance Computing Joint Project. They saw the application prospects of quasi particle based light sources, including non-destructive imaging for scanning viruses, understanding biological processes such as photosynthesis, manufacturing computer chips, and exploring the behavior of matter in planets and stars.

Researchers have stated that although each electron performs relatively simple motion, the total radiation of all electrons can simulate the radiation of particles moving faster than the speed of light, even if no local electron is faster than light or oscillating electrons.

Quasiparticle based light sources may have significant advantages over existing forms such as free electron lasers, as free electron lasers are scarce and large-scale, making them impractical for most laboratories, hospitals, and enterprises. According to the theory proposed by new research, quasi particles can generate incredibly bright light at short propagation distances, which may trigger widespread technological advancements in laboratories worldwide.

Source: Science and Technology Daily

Related Recommendations
  • Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications"....

    2024-07-12
    See translation
  • Industrial laser giant Coherent receives $33 million investment

    Recently, according to media reports, industrial laser giant Coherent has signed a "preliminary terms memorandum" with the US Department of Commerce, which will receive up to $33 million in investment under the Chip and Science Act.It is reported that the funds will mainly be used to support the modernization and expansion project of the cutting-edge manufacturing cleanroom in Coherent's existing ...

    2024-12-12
    See translation
  • A new approach to 3D printing has been published in a Nature journal

    In the last century, the improvement of mechanical properties of structural metals was mainly achieved through the creation of increasingly complex chemical compositions. The complexity of this ingredient increases costs, creates supply fragility, and makes recycling more complex.As a relatively new metal processing technology, metal 3D printing provides the possibility to re-examine and simplify ...

    2024-11-29
    See translation
  • HSG Laser launches new generation laser solutions

    HSG Laser unveiled its next-generation laser cutting solutions—the GH V2.0 high-power flatbed system and TS2 intelligent tube cutting machine—at its Düsseldorf showroom, marking a major milestone in its European market expansion. (Image: HSG Laser)Attended by customers and partners from across the continent, the event featured live demonstrations of both systems and highlighted HSG’s growing i...

    06-27
    See translation
  • The latest progress in laser chip manufacturing

    Modern computer chips can construct nanoscale structures. So far, only these tiny structures can be formed on top of silicon chips, but now a new technology can create nanoscale structures in a layer beneath the surface. The inventor of this method stated that it has broad application prospects in the fields of photonics and electronics, and one day, people can manufacture 3D structures on the ent...

    2024-07-29
    See translation