English

Researchers use a new frequency comb to capture photon high-speed processes

440
2023-11-02 14:59:09
See translation

From detecting COVID in respiration to monitoring greenhouse gas concentrations, laser technology called frequency combs can recognize specific molecules as simple as carbon dioxide to as complex as monoclonal antibodies, with unparalleled accuracy and sensitivity. Although frequency combs have incredible capabilities, their ability to capture high-speed processes such as hypersonic propulsion or protein folding into final three-dimensional structures is limited.

The National Institute of Standards and Technology (NIST), Toptica Photonics AG, and the University of Colorado at Boulder have now established a frequency comb system that can identify the presence of certain molecules in samples every 20 nanoseconds or billionths of a second.

Researchers may be able to use frequency combs to better understand the instantaneous intermediate steps in rapid movement, from the mechanics of hypersonic jet engines to the chemical reactions between enzymes that use this new function to regulate cell growth. The research results were published by the research team in the journal Nature Photonics.

The researchers used the commonly used dual frequency comb arrangement in their experiment, which consists of two laser beams that work together to detect the color spectrum of molecular absorption. Most dual frequency comb configurations use two femtosecond lasers to synchronously emit a pair of ultrafast pulses.

In this new experiment, researchers used a simpler and cheaper device called an "electro optical comb", which divides a continuous beam of light into two beams. Then, the electronic modulator changes the beam of light, generating an electric field, shaping them into a single "tooth" of a frequency comb. Each tooth represents a different color or frequency of light that can be absorbed by molecules of interest.

In a typical trial run, the electro-optical comb used by the researchers only contained 14 teeth, while the traditional frequency comb had thousands or even millions of teeth. However, researchers were able to detect changes in light absorption on a time scale of 20 nanoseconds, as each tooth has higher light power and is spaced apart from other teeth in frequency.

Researchers used a small nozzle in an inflatable cylinder to measure the pulse of supersonic carbon monoxide 2 when they appeared for demonstration. Measure the content of carbon dioxide in the air, or the proportion of CO2 mixture. Researchers can determine the concentration of pulse motion 2 by observing changes in carbon monoxide.

Scientists have observed how carbon monoxide reacts with the atmosphere in Mode 2, resulting in a change in atmospheric pressure. Even with state-of-the-art computer simulations, it is difficult to accurately extract these details.

The data collected from these studies can shed light on how to better understand how greenhouse gases interact with climate or lead to the design of internal combustion engines.

In the setup, an optical parametric oscillator was used to shift the comb teeth from near-infrared color to mid infrared color absorbed by carbon monoxide. However, the optical parametric oscillator can be set to various parts of the mid infrared spectrum, allowing the comb to detect different substances that absorb light in these areas.

This study includes information that other researchers can utilize to develop similar systems in the laboratory, making this new technology publicly available in a wide range of research fields and industries.

Long pointed out, "With this setting, you can generate any comb you want. The adjustability, flexibility, and speed of this method open the door to many different types of measurements.

Source: Laser Network

Related Recommendations
  • The research team describes laser direct writing of single-photon optical fiber integrated multimode storage on a communication band chip

    Figure: Experimental setup.Quantum memory that relies on quantum band integration is a key component in developing quantum networks that are compatible with fiber optic communication infrastructure. Quantum engineers and information technology experts have yet to create such a high-capacity network that can form integrated multimode photonic quantum memories in communication frequency ban...

    2023-08-04
    See translation
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    See translation
  • Research progress and prospects of CFRP laser surface cleaning

    Researchers from Materials Science at Harbin Institute of Technology, Zhengzhou Research Institute at Harbin Institute of Technology, and Key Laboratory of Microsystems and Microstructure Manufacturing at Harbin Institute of Technology, Ministry of Education, reviewed and reported on the research progress of laser surface cleaning of carbon fiber reinforced polymer composites (CFRP). The relevant ...

    03-06
    See translation
  • Lingke LP series industrial connectors provide fast, reliable, and efficient electrical connections for laser equipment

    Laser technology is currently a very mature technology and has been used on various laser equipment, such as laser cutting machines, laser projectors, medical laser equipment, etc. Advanced laser equipment requires high-performance and reliable industrial connectors to provide stable and safe power input and connection, which is one of the key links for the normal operation of laser equipment.Ling...

    2023-10-25
    See translation
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    See translation