English

Additive manufacturing of free-form optical devices for space use

45
2023-12-04 14:09:54
See translation

A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.

The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is now possible due to the emergence of suitable additive manufacturing techniques.

Freeform surface optical devices, such as reflectors, can now be designed and additive manufactured to present complex shapes, provide a larger field of view in smaller packaging sizes, and withstand harsh space environments.

Innovation Launch, Automation, New Materials, Communications, and Hypersonic Center Pioneer is a $180 million program aimed at commercializing the project to build Australia's space capabilities.

Darin Lovett, Executive Director of iLAuNCH Trailblazer, stated, "This project showcases the full content of iLAuNCH, using the 2021 Defense Innovation Partnership concept demonstrator, which investigates the feasibility of free-form optical components for small satellites and uses Australian technology to put them into production for real-world applications.".

An important requirement in the development of free-form optical devices is to be able to process additive manufactured parts to the extent that mirror finish can be developed.

Dr. Kamil Zuber, Senior Researcher at the University of South Australia, said, "We are developing optical grade finishes for additive substrates for satellite optical components.".

"We will also demonstrate the coating system for reflective optical components used in space applications."
Our project partners located in Adelaide, advanced manufacturer VPG Innovation, and mirror and camera system expert SMR Australia, have long-term experience in traditional and additive manufacturing, as well as product development in the automotive and defense sectors.

The additive manufacturing, molding, and vacuum coating capabilities of our partners make commercial production of developed products possible.
Dr. Bastian Stoehr, Senior Design Engineer at SMR Australia, stated that the company will contribute its advanced injection molding and coating expertise to the project.

Dr. Stoehr said, "More than a decade of collaboration has shown that the synergy between UniSA's research and Motherson's manufacturing capabilities brings greater results than the sum of its parts.".

The addition of St ä rke AMG's innovation focus will ensure that this joint venture not only drives South Australia to play a crucial role in space technology, but also reflects the true essence of cooperation.

Our joint efforts will redefine the possibilities of additive manufacturing and free-form surface optics, with the potential to have a transformative impact on the future of space exploration. When we contribute our efforts, we are not only driving technological progress, but also shaping a future that makes South Australia synonymous with cutting-edge value-added manufacturing.

Al Jawhari, co-founder and CEO of St ä rke AMG, stated that additive manufacturing has a transformative power and may actively reshape the manufacturing industry.
We are proud to lead these efforts in providing innovative satellite optical design and manufacturing for Earth observation and other critical applications.
We are working together to create a future where free-form optics will redefine the possibilities of space missions.

Source: Laser Net

Related Recommendations
  • Smaller laser facilities use new methods to break records before proton acceleration

    The Helmholtz Dresden Rosendorf Center (HZDR) has made significant progress in laser plasma acceleration. By adopting innovative methods, the research team successfully surpassed previous proton acceleration records significantly.They obtained energy for the first time that can only be achieved in larger facilities so far. As reported by the research team in the journal Nature Physics, promising a...

    2024-05-15
    See translation
  • The world's highest power industrial grade fiber laser is released in Tianjin

    On August 31st, Tianjin Kaipulin Optoelectronics Technology Co., Ltd. (hereinafter referred to as Kaipulin), a Tianjin Port Free Trade Zone enterprise, officially released the world's first 200000 watt ultra-high power industrial grade fiber laser, breaking the record for the highest power of industrial grade fiber lasers in the world and marking China's stable position in the international advanc...

    2024-09-02
    See translation
  • Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

    Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.This technology is developed in response to biophoton sensing technology, mainly utilizing ...

    2023-08-22
    See translation
  • Multi functional materials for solar cells and organic light-emitting diodes to achieve high performance and stability

    Through joint research, a team developed a 4-amino-TEMPO derivative with photocatalytic performance and successfully used it to produce high-performance and stable fiber like dye sensitized solar cells (FDSSCs) and fiber like organic light-emitting diodes (FOLEDs). This paper was published in the journal Materials and Energy Today.The developed 4-amino-TEMPO derivatives have the characteristic of ...

    2024-06-03
    See translation
  • Vector Photonics accelerates the commercialization of PCSEL laser technology

    Recently, Vector Photonics, a well-known surface coupled laser technology supplier in the UK, announced that the company has received £ 3 million in financing (including £ 1.667 million in equity investment and £ 1.27 million in additional research funding, equivalent to approximately RMB 27.63 million) to help commercialize its surface coupled laser technology.(Image source: Vector Photonics)Vect...

    2024-07-04
    See translation