English

Outlook - Future of miniaturized lasers

6
2023-12-19 18:10:39
See translation

The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.

In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks were also very obvious. The welding threshold was high, the efficiency was low, and the subsequent polishing and polishing were complex. Especially, the strong arc radiation generated was harmful to the operator's health. With the launch of miniaturized fiber lasers, the handheld laser welding market has also experienced explosive growth, and now this market has begun to take shape.

 

In the field of industrial lasers, the importance of miniaturization trends in fiber lasers is beyond doubt. We are also well aware that miniaturization has always been a turning point in every technological advancement, such as in mobile phones, computers, and semiconductors. I believe that miniaturization will also be a necessary path for the advancement of lasers. With smaller size and higher integration, it means greater portability, richer application scenarios, and greater benefits for end users.

Imagine what kind of impact the palm sized high-energy laser on Iron Man's arm would have on the entire laser manufacturing industry and even the entire technology field? To what extent will laser weapons, cutting machines, and handheld welding machines evolve? Nowadays, semiconductors and computers continue to evolve towards miniaturization. Who dares to assert that miniaturization and lightweighting of lasers are meaningless? Looking forward to breakthroughs in laser technology bringing dividends to many fields, and the future of the laser industry is promising!

Related Recommendations
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    06-28
    See translation
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    04-07
    See translation
  • Laser engraving: Researchers have created a revolutionary technology

    Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the charac...

    2023-11-24
    See translation
  • Researchers have discovered a new method to improve the resolution of laser processing

    Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.Their research results are published in the journal Optics Letters.Laser processing, like drilling and cutting, is crucial in industrie...

    03-28
    See translation
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    06-07
    See translation