English

Laser driven leap forward: the next generation of magnetic devices for controlling light is born

896
2023-12-21 17:53:12
See translation

Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.

This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-term challenge in this field in the past. It is expected to make progress in compact magneto-optical isolators, miniaturized lasers, high-resolution displays, and small optical devices.

Laser heating of transparent magnetic materials

Specifically, researchers from Tohoku University and Toyohashi University of Technology in Japan have developed a new method for manufacturing transparent magnetic materials using laser heating.

"The key to this achievement lies in the creation of 'cerium substituted yttrium iron garnet' (Ce: YIG), a transparent magnetic material that uses specialized laser heating technology," said Taichi Goto, associate professor and co-author of the Institute of Electronic Communications (RIEC) at Tohoku University in Japan. "This method breaks through the key bottleneck of integrating magneto-optical materials with optical circuits without damaging them - a problem that hinders the progress of miniaturization in optical communication equipment."

Magnetic optical isolators in optical communication

Magnetic optical isolators are crucial for ensuring stable optical communication. They are like traffic lights directing, allowing them to move in one direction but not in another direction. Integrating these isolators into silicon-based photonic circuits is challenging as they typically involve high-temperature processes.

Due to this challenge, Taichi Goto and his colleagues focused their attention on laser annealing - a technique that selectively heats specific areas of materials using lasers. This enables precise control, affecting only the target area without affecting the surrounding area.

Previous studies have used it to selectively heat bismuth substituted yttrium iron garnet (Bi: YIG) thin films deposited on dielectric electron microscopy. This allows Bi: YIG to crystallize without affecting the dielectric electron microscopy.

However, when using Ce: YIG (which is an ideal material for optical devices due to its magnetic and optical properties), problems arise as exposure to air can lead to unnecessary chemical reactions.

To avoid this situation, researchers have designed a new device that heats materials in a vacuum, which means there is no air and laser is used. This allows for precise heating of small areas (approximately 60 microns) without altering the surrounding materials.

The impact on optical technology

Goto added, "The transparent magnetic materials created through this method are expected to significantly promote the development of compact magneto-optical isolators, which is crucial for stable optical communication. In addition, it opens the way for the manufacture of powerful miniaturized lasers, high-resolution displays, and small optical devices."

Related Recommendations
  • Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

    Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producin...

    2024-04-18
    See translation
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    See translation
  • 43 seconds! Completion of laser welding of a new energy vehicle body

    March 8, in the three sessions of the 14th National People's Congress, the second “representative channel” focused on interviews, the National People's Congress, the party secretary of HGTECH Science and Technology, Chairman of the Board of Directors Ma Xinqiang, said in response to a reporter's question, in order to crack the “strangle  “technical problems, HGTECH over the years in the field of h...

    03-11
    See translation
  • Trends and Reflections on the Laser Industry in 2025

    In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.In 2025, practitioners in the laser and manufacturing industries still face ma...

    01-02
    See translation
  • Artists transform paper into meticulous laser cutting designs

    In the past few years, paper artists have demonstrated the versatility of their common fiber materials. Some people manually cut or carve paper, while others combine traditional craftsmanship with digital design. Ibbini Studio is in this situation. Abu Dhabi artist Julia Ibni collaborated with computer scientist Stephen Noye to create sculptural paper works inspired by decorative patterns such as ...

    2024-01-23
    See translation