English

Laser driven leap forward: the next generation of magnetic devices for controlling light is born

874
2023-12-21 17:53:12
See translation

Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.

This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-term challenge in this field in the past. It is expected to make progress in compact magneto-optical isolators, miniaturized lasers, high-resolution displays, and small optical devices.

Laser heating of transparent magnetic materials

Specifically, researchers from Tohoku University and Toyohashi University of Technology in Japan have developed a new method for manufacturing transparent magnetic materials using laser heating.

"The key to this achievement lies in the creation of 'cerium substituted yttrium iron garnet' (Ce: YIG), a transparent magnetic material that uses specialized laser heating technology," said Taichi Goto, associate professor and co-author of the Institute of Electronic Communications (RIEC) at Tohoku University in Japan. "This method breaks through the key bottleneck of integrating magneto-optical materials with optical circuits without damaging them - a problem that hinders the progress of miniaturization in optical communication equipment."

Magnetic optical isolators in optical communication

Magnetic optical isolators are crucial for ensuring stable optical communication. They are like traffic lights directing, allowing them to move in one direction but not in another direction. Integrating these isolators into silicon-based photonic circuits is challenging as they typically involve high-temperature processes.

Due to this challenge, Taichi Goto and his colleagues focused their attention on laser annealing - a technique that selectively heats specific areas of materials using lasers. This enables precise control, affecting only the target area without affecting the surrounding area.

Previous studies have used it to selectively heat bismuth substituted yttrium iron garnet (Bi: YIG) thin films deposited on dielectric electron microscopy. This allows Bi: YIG to crystallize without affecting the dielectric electron microscopy.

However, when using Ce: YIG (which is an ideal material for optical devices due to its magnetic and optical properties), problems arise as exposure to air can lead to unnecessary chemical reactions.

To avoid this situation, researchers have designed a new device that heats materials in a vacuum, which means there is no air and laser is used. This allows for precise heating of small areas (approximately 60 microns) without altering the surrounding materials.

The impact on optical technology

Goto added, "The transparent magnetic materials created through this method are expected to significantly promote the development of compact magneto-optical isolators, which is crucial for stable optical communication. In addition, it opens the way for the manufacture of powerful miniaturized lasers, high-resolution displays, and small optical devices."

Related Recommendations
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    See translation
  • Continuation of the Term of President and CEO of Jena Germany

    Recently, the supervisory board of Jenoptik, a leading German laser technology company, announced an important decision: to extend and confirm the term of Dr. Stefan Traeger as Chairman of the Executive Board, with a new term of three years starting from July 1, 2025, and the contract validity period correspondingly extended to June 30, 2028. Dr. Stefan Traeger has been serving as the President ...

    2024-09-06
    See translation
  • Progress in the Research of Continuous Wave Laser in Chemical Industry

    Laser plays an important role in fields such as photonic chips, laser displays, and in vehicle radars. Organic materials have advantages such as molecular diversity, energy level richness, heterogeneous compatibility, and ease of processing. They have significant advantages in the construction of high-performance and multifunctional lasers and are expected to further innovate laser technology and ...

    2023-08-31
    See translation
  • A German research team has developed a new type of perovskite stacked battery

    According to relevant media reports, a research team from the Helmholtz Center in Berlin, Germany, and Humboldt University has jointly developed a new type of perovskite stacked battery. This battery has broken the world record for similar batteries with a photoelectric conversion efficiency of 24.6%. In the solar cell family, in addition to silicon-based solar cells, there are also thin-film so...

    02-08
    See translation
  • Scientists have created a full spectrum white light laser with bright spot, smooth and flat spectrum, and large pulse energy characteristics

    Recently, the team led by Professor Li Zhiyuan from South China University of Technology has successfully developed a full spectrum white light laser, which has the characteristics of bright spot, smooth and flat spectrum, and large pulse energy. It can cover the ultraviolet visible infrared full spectrum of 300-5000nm, with a single pulse energy of 0.54mJ.The launch of such a full spectrum white ...

    2023-11-07
    See translation