English

Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

157
2024-01-02 15:13:24
See translation

Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.

Research Background
Nitrogen dioxide is a common pollutant, mainly derived from fossil fuel combustion emissions, natural lightning, and microbial processes in soil. NO2 in the atmosphere contributes to the formation of ground ozone, which may cause photochemical smog and increase the acidity of rainwater. Continuous exposure to high concentrations of NO2 may have various short-term and long-term adverse health effects on the respiratory systems of humans and animals. Therefore, developing a cost-effective and robust NO2 monitoring sensor system is crucial.

Many technical solutions have been developed for NO2 detection. Chemiluminescence and wet chemical analysis are commonly used for NO2 detection. However, these methods have a slow response time and low selectivity in distinguishing between NO and NO2, which limits their application. Optical methods based on absorption spectroscopy have high sensitivity, selectivity, and fast response, providing a powerful means for trace gas analysis. The laser absorption spectroscopy technology based on the mid infrared molecular fingerprint region is very ideal for trace gas analysis, as most atmospheric components have strong fundamental vibrational transitions in this spectral region, achieving high sensitivity and selective detection of trace gases. The commercially available continuous wave (CW) quantum cascade lasers (QCLs) in the mid infrared spectral region have been widely used in the development of spectroscopic techniques for quantitative analysis of NO2.

Experimental setup
In this work, we constructed a laser absorption spectrometer based on mid infrared CW-QCL in the laboratory to revise the spectral range from 1629 cm-1 to 1632 cm-1. The figure shows a schematic diagram of the spectral setup based on mid infrared CW-QCL for studying NO2 absorption spectral line parameters.

Ningbo Haier Xin Optoelectronic Technology Co., Ltd. provided a laser emitter (QC-qubeTM) and driver (QC750 TouchTM) for this project. A CW room temperature QCL chip is packaged in a thermoelectric (TE) cooled beam shaping package, driven by an integrated temperature and low noise current controller.

The laser source operates in the wavelength range of 1629 cm-1 to 1632 cm-1, without mode switching, and has an average output power of 30 mW. The laser frequency is scanned using triangular waves at a typical frequency of 100 Hz. The linewidth of the laser is approximately<10 MHz, so the broadening caused by the laser linetype can be ignored. The laser beam is initially collimated and passes through a sample cell with an optical path of 29.6 cm. The wedge-shaped CaF2 window placed at Brewster angle is used to avoid residual Etalon stripes. The QCL output beam is combined with visible red light (632.8 nm) through a ZnSe beam splitter to facilitate optical adjustment of the QCL output beam. The main beam passing through the sample pool is focused onto a TE cooled high-speed infrared photovoltaic detector through a convex lens, which can operate at room temperature. Therefore, the detector does not require liquid nitrogen refrigeration, simplifying the routine use of the system and allowing for long-term automated operation. The data is then obtained using a data acquisition board. The other part of the beam is coupled to an Etalon, which consists of two ZnSe mirrors with a free spectral range of 0.0163 cm-1.

Conclusion
In this study, we developed a compact spectral sensor based on thermoelectric cooling for the detection of trace amounts of NO2 using a room temperature continuous wave quantum cascade laser (RT CW-QCL). The high-resolution spectra of NO2 and N2 mixtures were studied in detail at room temperature (~296 K) and within a pressure range of 0-90 millibars. The absorption spectrum was fitted using standard Voigt profiles. Accurate measurements of line intensity and N2 pressure induced broadening coefficient were conducted for 43 NO2 spectral lines around 6.2 microns. This spectral region is very suitable for high-sensitivity detection of NO2 concentration. Our results are quite consistent with the latest HITRAN16 database in terms of spectral line intensity. Experimental spectral parameters will help upgrade our newly developed NO2 gas sensor system for atmospheric trace gas monitoring and industrial process control. In addition, we hope that these results have important value for the spectral database of NO2 molecules.

Source: Sohu

Related Recommendations
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    See translation
  • Jingyi Optoelectronics launches a transmittance detector to detect the near-infrared transmittance characteristics of plastic materials

    Laser welding plastic transmittance tester is an important industrial testing equipment used to measure the transmittance of plastic after welding, in order to evaluate welding quality and product performance. With the widespread application of plastic products in various fields, the requirements for plastic welding quality and transparency are also increasing. Therefore, laser welded plastic tran...

    2024-04-11
    See translation
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    See translation
  • Scientists demonstrate powerful UV-visible infrared full-spectrum laser

    Figure: a. Schematic diagram of the HCF-LN-CPPLN experimental setup. W. CaF? Window M, mirror.b. The bright white light circular spots emitted by the CPPLN sample.c. The first-order diffraction beam of B displays a colorful rainbow pattern from purple to red.d. The HCF-LN-CPPLN module generates normalized spectra of the output full spectrum laser signal through the second NL HHG and third NL SPM e...

    2023-08-25
    See translation
  • Teledyne Technologies acquires a portion of its optoelectronic business

    Recently, Teledyne Technologies announced that it has reached an agreement to acquire a portion of Excelitas Technologies' aerospace and defense electronics business for $710 million in cash.This acquisition includes the optical systems business under the Qioptiq brand headquartered in North Wales, UK, as well as the Advanced Electronic Systems (AES) business headquartered in the United States.It ...

    2024-11-12
    See translation