English

Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

965
2023-08-22 14:51:18
See translation

Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.

This technology is developed in response to biophoton sensing technology, mainly utilizing a miniaturized photonic integrated circuit (PIC) system with highly stable fiber connections.

(Image source: Fraunhofer IZM)
In the past, adhesive was often used in fiber optic interconnections of photonic integrated circuits. However, in the long run, this solution will lead to the occurrence of optical degradation, ultimately resulting in optical transmission loss. The softness of the adhesive can cause the position of the component to change over time and create an interference point between the two layers of glass. As the adhesive ages, this can lead to signal attenuation and brittle connections.

Due to the different volumes of glass fiber and substrate, the heat capacity of the two parts to be joined is not equal, resulting in different heating and cooling behaviors. If there is no appropriate compensation for the difference, it may lead to deformation and cracks during the cooling process. To address this issue, the team used a separate adjustable laser to uniformly preheat the substrate, allowing the melting stage of the fiber and substrate to occur simultaneously.

The technology developed by this project is no longer limited to the experimental setup stage, and the system they developed is designed for industrial environments. The Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany, in collaboration with Finicontec Service, implemented this technology process in automation systems and found that it has high repeatability and scalability. It is equipped with thermal process monitoring up to 1300 ℃, accurate to 1 μ M's positioning system, as well as imaging recognition process and control software.

The potential of high automation enables customers to use photonic integrated circuits (PICs) with maximum coupling efficiency. Industrial integration means a leap in the field of biophotonics applications, as well as quantum communication and high-performance photonics, "G ó mez said.

Source: OFweek

Related Recommendations
  • Yang Xueming from Shenzhen has been elected as a Foreign Fellow of the Royal Society of England

    On May 20th, the Royal Society announced on its official website that over 90 scientists who have made outstanding contributions to scientific research have been newly elected as Fellow of The Royal Society (FRS). Yang Xueming, an academician of the CAS Member and chief director of the Shenzhen Free Electron Laser Device, was newly elected as a foreign academician of the Royal Society of England.A...

    05-26
    See translation
  • Laser manufacturer DIT signs KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. After the announcement, DIT's stock price rose for five consecutive days, entering the 16000 Korean won range. Then on the 22nd, it rose 2580 Korean won from the previous day'...

    02-15
    See translation
  • Manz AG officially announces its application for bankruptcy restructuring

    Last month, Manz AG officially announced that the company is about to undergo bankruptcy restructuring. The board of directors of the company believes that due to insufficient liquidity and excessive debt, Manz AG intends to apply for bankruptcy proceedings in accordance with bankruptcy laws. The application is expected to be submitted in the next few days. Manz AG is headquartered in Reutlingen...

    01-07
    See translation
  • Nature Photonics | New Comb Laser Assists Stable and Efficient Generation of Multi wavelength Signals

    Recently, researchers have developed a comb laser with higher stability and efficiency. The use of synthetic reflection self injection locking micro comb design enables the laser to achieve stability and increase conversion efficiency by more than 15 times. This efficient, stable, and easy to manufacture design is expected to make rapid progress in fields such as portable sensors, autonomous navig...

    2024-03-02
    See translation
  • NASA plans to use lasers to measure the impact of exhaust gases on the lunar surface during landing, in order to plan lunar landings more effectively

    Recently, NASA's official website showed that a research team at the University of Central Florida has tested an instrument called Ejecta STORM, which aims to measure the size and velocity of surface particles generated by exhaust gases from rocket powered landers on the moon or Mars.According to NASA, when a spacecraft lands on the moon or Mars, rocket exhaust plumes can produce efflorescent ejec...

    2023-10-31
    See translation