English

Topological high-order harmonic spectroscopy in Communications Physics

798
2024-01-15 17:07:40
See translation

It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The relevant paper was published in Communications Physics under the title of "Topological high molecular spectroscopy copy".

High order harmonic generation (HHG) is an extreme nonlinear effect that occurs when a strong field laser is focused on a gas medium, resulting in hundreds of orders of high-energy harmonic photons.

In the paper, researchers demonstrated the high-order harmonic spectroscopy scheme generated by the interaction between structured driving beams and crystal solid targets. Unlike isotropic gas targets, researchers have demonstrated the coupling of crystal symmetry with the driving beam topology during high-order harmonic generation (HHG) processes. This coupling feature is encoded into a complex spatial structure that emits harmonics. In particular, researchers have revealed this interwoven photon conversion by studying the HHG of monolayer graphene driven by LPVB.

Figure 1: Overview of topological high-order harmonic spectra in graphene and argon gas.

Figure 2: Far field harmonic emission curves of circularly polarized components on the left (LCP) and right (RCP) sides.

Figure 3: Comparison of orbital angular momentum (OAM) carried by high-order harmonics emitted from anisotropic and isotropic targets.

Researchers have found that, unlike isotropic cases, the harmonics generated by crystal targets can break the conservation of the driving topology based on their compositional symmetry. Researchers have provided an analytical derivation that can (1) predict the topology of high-order harmonic beams from the anisotropic symmetry of the target, and (2) retrieve the anisotropic response of the target from the topology of high-order harmonic beams. Therefore, high-order harmonic spectroscopy based on topological structure can extract spatial resolution information of target nonlinear response, which cannot be obtained by standard spectroscopy techniques.

Figure 4: Near field harmonic emission profiles obtained in anisotropic and isotropic targets.

Figure 5: Retrieve nonlinear response from topological harmonic characteristics.

Although researchers have demonstrated the interaction between the topological structure of vector beam drivers and target symmetry in two-dimensional materials such as graphene, they believe that their research results open up a universal scenario for topological optics, where the non-linear response of the target is coupled with the topological structure of light. Researchers believe that this technology can be further used to characterize more complex targets, such as polycrystalline or heterostructures.

Source: Sohu

Related Recommendations
  • Mei Xin Sheng: The development of high-precision polarized light crown products has been completed

    On September 5, when Mei Xin Sheng held an analyst meeting, it said that the company has launched a fully integrated ultra-low power optical proximity detection sensor and a three-in-one ambient light and proximity detection sensor with ultra-high sensitivity, which have entered mass production.The research and development of high-precision polarized light crown products has been completed, the fe...

    2023-09-05
    See translation
  • Microstructure evolution and mechanical properties of Ti-6Al-4V alloy prepared by dual ultrasonic vibration assisted directional energy deposition

    1. Research backgroundDirected energy deposition (DED), as an efficient and economical technology in the field of additive manufacturing (AM), is widely used in the manufacturing of metal materials. However, its high heating and cooling rates, as well as significant temperature gradients, often lead to rapid solidification, forming cross layer columnar grains and internal defects, seriously affect...

    03-21
    See translation
  • Multinational research team achieves breakthrough in diamond Raman laser oscillator

    Recently, the team led by Professor Lv Zhiwei and Professor Bai Zhenxu from Hebei University of Technology, in collaboration with Professor Richard Mildren from Macquarie University in Australia and Professor Takashige Omatsu from Chiba University in Japan, successfully achieved direct output of Raman vortex optical rotation with large wavelength extension in a diamond Raman laser oscillator. This...

    02-27
    See translation
  • Blue laser enterprise NUBURU obtains $5.5 million bridge financing

    Recently, NUBURU, a supplier of high-power and high brightness industrial blue laser technology in the United States, announced that it has reached bridge loan agreements ("bridge loans" or "bridge financing") with existing and new institutional investors.The principal of this bridge financing is $5.5 million, aimed at providing funding for the company until it obtains long-term credit financing,...

    2023-11-23
    See translation
  • AMCM 8 laser M 8K metal 3D printing equipment is about to be launched, equipped with 8 lasers

    In October 2023, Germany's AMCM (EOS, a global technology leader in industrial grade additive manufacturing) announced the upcoming launch of the M 8K metal 3D printing equipment. The device will be equipped with 8 lasers, with a construction volume of 800 x 800 x 1200 millimeters, nearly four times the size of AMCM's previously launched M 4K metal 3D printing device on the market.ArianeGroup's ho...

    2023-10-19
    See translation