English

Scientists use the light inside fibers as thin as hair to calculate

955
2024-01-20 10:36:54
See translation

Scientists from Heriot Watt University in Edinburgh, Scotland have discovered a powerful new method for programming optical circuits, which is crucial for the delivery of future technologies such as unbreakable communication networks and ultrafast quantum computers.

"Light can carry a large amount of information, and optical circuits that use light instead of electricity are seen as the next major leap in computing technology," explained Professor Mehul Malik, an experimental physicist and physics professor at the Heriot School of Engineering and Physical Sciences.

But as optoelectronic circuits become larger and more complex, they become more difficult to control and manufacture, which may affect their performance. Our research demonstrates an alternative and more universal optoelectronic engineering method that utilizes processes that occur naturally in nature.

Professor Malik and his team are conducting research using widely used commercial optical fibers worldwide to transmit the internet to our homes and businesses. These fibers are thinner than the width of human hair and use light to transmit data.

By utilizing the natural scattering behavior of light inside optical fibers, they found that they could program the optical circuits inside the fibers in a high-precision manner.

This study was published today in the journal Nature Physics.

"When light enters optical fibers, it scatters and mixes in complex ways," Professor Malik explained. By studying this complex process and accurately shaping the light entering the fiber optic, we have found a way to carefully design the optical circuits inside this disease.

Optical circuits are crucial for the future development of quantum technology, which is designed at the microscopic level by working with individual atoms or photons. These technologies include powerful quantum computers with enormous processing power and quantum communication networks that cannot be hacked.

"For example, optical circuits are required at the end of quantum communication networks so that information can be measured after long-distance propagation," explained Professor Malik. They are also a crucial part of quantum computers, used for complex calculations of light particles.

Quantum computers are expected to make significant progress in areas such as drug development, climate prediction, and space exploration. Machine learning is another field that uses optical circuits to process large amounts of data very quickly.

Professor Malik said that the power of light lies in its multiple dimensions.
"We can encode a large amount of information on a single light particle," he explained. About its spatial structure, about its temporal structure, about its color. If you can use all these attributes for calculations simultaneously, it will release a lot of processing power.

The researchers also demonstrated how to use their programmable optical circuits to manipulate quantum entanglement, a phenomenon where two or more quantum particles can remain connected even when they are far apart. Entanglement plays an important role in many quantum technologies, such as correcting errors within quantum computers and achieving the safest types of quantum encryption.

Professor Malik and his research team at the Beyond Binary Quantum Information Laboratory at the University of Heriot conducted this study with collaborating scholars from institutions such as Lund University in Sweden, Sapienza University in Rome, and Twente University in the Netherlands.

Source: Laser Net

Related Recommendations
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    See translation
  • Shanghai Optics and Machinery Institute has made progress in femtosecond fiber lasers based on twisted Sagnac interferometer mode locking

    Recently, the research team of the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a torsional Sagnac interferometer and applied it to the fiber laser system, realizing mode locking self starting and pulse shaping. The relevant research achievements were published in the Journal of Lightwave Technology u...

    2024-04-22
    See translation
  • New discoveries bring progress in photon calculation

    International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way f...

    2024-04-27
    See translation
  • The 20th Wuhan Optoelectronics Expo 2025 to Open Grandly

    From May 15 to 17, 2025, the 20th Wuhan Optoelectronics Expo will be held grandly at the China Optics Valley Convention and Exhibition Center in Wuhan. With the theme "Light Connects Everything, Intelligence Leads the Future," this year's expo will focus on six major fields: laser technology and applications, optics and precision optics, information communication and semiconductors, automotive opt...

    03-14
    See translation
  • Upgrading 3000W fiber laser to high energy and miniaturization has become a new trend

    Recently, the discussion on "miniaturization" in the domestic laser industry has become increasingly heated. From various exhibition venues, miniaturization and lightweight have become important display directions for fiber laser manufacturers.High energy and miniaturization have become new trendsIn the past few years, high-power has undoubtedly been the main development direction in the field of ...

    2023-09-20
    See translation