English

Using Topological Photon Chips to Uncover the Secrets of Open Systems

967
2024-02-02 18:08:02
See translation

Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.

Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the surrounding environment.

However, if the energy gain and loss are distributed in an orderly manner, so that they cancel each other out in all possible situations, the dynamics of the system can also be stable. This can be ensured through a phenomenon called parity check time symmetry.

All components of the system are carefully arranged to exchange the gain and loss of light through simultaneous mirroring and time reversal, making the system appear unchanged, just like a video played backwards and simultaneously reflected in a mirror, but looking exactly the same as the original video, which means it is PT symmetric.

PT symmetry is not just an academic concept; On the contrary, it opens the door to a more thorough understanding of open systems.

Professor Alexander Szameit from Rostock University specializes in studying interesting physical phenomena related to PT symmetry. Laser can replicate the behavior of artificial and natural materials arranged in periodic lattice structures in their customized photonic chips, making them an excellent platform for testing various physical theories.

Therefore, Professor Szameit and his colleagues successfully integrated the ideas of topology and PT symmetry. Topology is the study of properties that remain unchanged even when the underlying system is constantly deformed. When a system possesses these qualities, it becomes particularly resistant to external influences.

Szameit's team used laser engraved photonic waveguides in their experiments, which are optical structures etched into materials by laser beams.

In these "optical circuits," so-called topological insulators are implemented.
So far, people believe that open systems and this powerful boundary state are fundamentally incompatible. Researchers from Rostock, Vilzburg, and Indianapolis have jointly demonstrated that it is possible to address the apparent paradox by dynamically allocating benefits and losses over time.

These findings may pave the way for the development of new cutting-edge circuits for transmitting sound, light, and even electricity. These findings also represent significant advances in the understanding of topological insulators and open systems.

This study was funded by the German Research Foundation and supported by the Alfred Krupp von Boren and the Halbach Foundation.

Source: Laser Net


Related Recommendations
  • Lightmatter announces the first 16 wavelength bidirectional link on single-mode fiber

    Lightmatter, a Boston-based startup developing silicon photonics hardware aimed at AI and high-performance computing, has announced a 16-wavelength bidirectional Dense Wavelength Division Multiplexing optical link operating on one strand of standard single-mode (SM) fiber.Powered by Lightmatter’s Passage interconnect and Guide laser technologies, this development “shatters previous limitations in ...

    08-22
    See translation
  • The University of Illinois combines the light emitted by multiple VCSEL into a single coherent mode

    Today, VCSELs (vertical cavity surface-emitting lasers) are used in everything from computer mice to face-scanning hardware in smart phones. They are renowned for their ability to integrate seamlessly into semiconductor chips, VCSELs are still considered to be an active field of research, and many researchers believe there are still important applications waiting to be discovered.The laboratory of...

    08-04
    See translation
  • Scientists Developing New Low Cost Manufacturing Technologies for High Resolution Optical Components

    Scientists from Leibniz University in Hanover have pioneered the development of a new manufacturing technology - UV LED based microscopy projection lithography. This technology is expected to completely change the manufacturing method of optical components, providing high resolution at lower cost and ease of use. The MPP system utilizes the power of UV LED light sources to transcribe the structura...

    2024-01-06
    See translation
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    See translation
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    See translation