English

Using Topological Photon Chips to Uncover the Secrets of Open Systems

93
2024-02-02 18:08:02
See translation

Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.

Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the surrounding environment.

However, if the energy gain and loss are distributed in an orderly manner, so that they cancel each other out in all possible situations, the dynamics of the system can also be stable. This can be ensured through a phenomenon called parity check time symmetry.

All components of the system are carefully arranged to exchange the gain and loss of light through simultaneous mirroring and time reversal, making the system appear unchanged, just like a video played backwards and simultaneously reflected in a mirror, but looking exactly the same as the original video, which means it is PT symmetric.

PT symmetry is not just an academic concept; On the contrary, it opens the door to a more thorough understanding of open systems.

Professor Alexander Szameit from Rostock University specializes in studying interesting physical phenomena related to PT symmetry. Laser can replicate the behavior of artificial and natural materials arranged in periodic lattice structures in their customized photonic chips, making them an excellent platform for testing various physical theories.

Therefore, Professor Szameit and his colleagues successfully integrated the ideas of topology and PT symmetry. Topology is the study of properties that remain unchanged even when the underlying system is constantly deformed. When a system possesses these qualities, it becomes particularly resistant to external influences.

Szameit's team used laser engraved photonic waveguides in their experiments, which are optical structures etched into materials by laser beams.

In these "optical circuits," so-called topological insulators are implemented.
So far, people believe that open systems and this powerful boundary state are fundamentally incompatible. Researchers from Rostock, Vilzburg, and Indianapolis have jointly demonstrated that it is possible to address the apparent paradox by dynamically allocating benefits and losses over time.

These findings may pave the way for the development of new cutting-edge circuits for transmitting sound, light, and even electricity. These findings also represent significant advances in the understanding of topological insulators and open systems.

This study was funded by the German Research Foundation and supported by the Alfred Krupp von Boren and the Halbach Foundation.

Source: Laser Net


Related Recommendations
  • Aerosol jet printing can completely change the manufacturing of microfluidic devices

    Surface acoustic wave technology is renowned for its high precision and fast driving, which is crucial for microfluidics and affects a wide range of research fields. However, traditional manufacturing methods are time-consuming, complex, and require expensive cleanroom facilities.A new method overcomes these limitations by utilizing aerosol jet printing to create customized equipment with various ...

    2024-02-02
    See translation
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    See translation
  • Laser additive manufacturing: monitoring during defect occurrence

    Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significa...

    2023-12-06
    See translation
  • Mirico successfully raised $2 million with unique laser dispersion spectroscopy technology

    In the field of high-performance gas sensing intelligence, Mirico stands out with its unique laser dispersive spectroscopy (LDS) technology, successfully raising $2 million in the latest round of financing.Recently, Mirico announced this good news. This financing is led by Shell Ventures and New Climate Ventures, with support from the UK Innovation and Science Seed Fund (UKI2S) and other existing ...

    2024-06-28
    See translation
  • Mycronic receives first order after upgrading solid-state lasers

    Recently, Mycronic AB received its first order from SK Electronics in Japan to upgrade the installed display mask writer from a gas laser to a solid-state laser. The upgrade is scheduled to be delivered within the next two years.Image source: MycronicIt is reported that Mycronic's "Pattern Generators" department provides mask writers for display manufacturing and semiconductor production. So far, ...

    2023-10-16
    See translation