English

Shanghai Photonics Corporation has made progress in laser welding of structural materials (Ni-28W-6Cr alloy) for new-generation molten salt reactors

1303
2023-08-25 13:59:25
See translation

Recently, Yang Shanglu, a researcher at the Laser Intelligent Manufacturing Technology Research and Development Center of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made new progress in laser welding of the fourth-generation reactor-molten salt reactor structural material Ni-28W-6Cr nickel-based superalloy. 

The research team applied the high power fiber laser welding technology to Ni-28W-6Cr alloy for the first time, and analyzed the dynamic cracking behavior characteristics of the laser welding hot crack by using high speed camera technology, and clarified the cracking mechanism. 

The relevant research results are summarized as "Dynamic laser welding hot cracking behavior and mechanism of new structural material Ni-28W-6Cr alloy for molten. salt reactor "was published in the Journal of Materials Research and Technology.

Ni-28W-6Cr high temperature nickel base alloy is a new structural material designed for the new generation of high temperature molten salt reactor (> 850℃) in China, which has excellent high temperature resistance and corrosion resistance to molten salt. However, due to the high alloying level of the alloy, it has a very high sensitivity to welding hot cracks, which poses a great threat to the service safety of welded joints and structures. 

In order to improve the laser welding quality of Ni-28W-6Cr alloy and promote the application of nuclear energy engineering, it is urgent to study the cracking behavior and influencing factors of Ni-28W-6Cr high temperature nickel base alloy laser welding, and solve the problem of laser cracking by elucidating the cracking mechanism.

The dynamic crack behavior of Ni-28W-6Cr alloy laser welding was analyzed by using a 10,000-watt laser processing unit combined with high-speed imaging technology, and the relationship between the type, number, size, propagation behavior and laser power of the hot crack was obtained. 

The influencing factors of hot crack initiation and propagation (laser process parameters, element segregation, precipitated phase and stress, etc.) were clarified, and the mechanism of hot crack cracking in laser welding was elucidated. The work laid a foundation for the control of Ni-28W-6Cr alloy laser welding hot crack, the realization of alloy defect free laser welding, and promote the construction of a new generation of molten salt reactor.

This work is supported by the National Natural Science Foundation Youth Fund and the National Key Research and Development Program.

Figure 1: (a) Dynamic cracking behavior of Ni-28W-6Cr alloy during laser welding; (b) microstructure of Ni-28W-6Cr alloy during laser welding.

Figure 2 EBSD analysis results of Ni-28W-6Cr alloy laser welding hot crack: (a) solidification crack, (b) liquefaction crack.

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    See translation
  • Laser giant seeks $100 million financing for $422 million debt restructuring

    On August 6th local time, Luminar, a leading publicly traded company in the field of LiDAR, announced a $422 million debt restructuring and raised $100 million in new capital. This measure marks Luminar taking solid steps in optimizing its capital structure and enhancing its financial stability.In early May this year, this laser radar manufacturer released an open letter disclosing a major strateg...

    2024-08-09
    See translation
  • The construction of China's first attosecond laser device in Dongguan provides strong impetus for breakthroughs in multiple major fundamental scientific issues such as quantum computing

    On October 3rd, the 2023 Nobel Prize in Physics was announced, recognizing scientists who have studied attosecond physics, marking the beginning of the attosecond era for humanity.At present, China's first attosecond laser device, the "Advanced attosecond Laser Facility", is being prepared and built in Dongguan, Guangdong, providing strong impetus for breakthroughs in multiple major basic scientif...

    2023-10-07
    See translation
  • Google works with magic leap on AR optics and manufacturing

    In the 2010s, Magic leap is one of the most hyped augmented reality companies, with a lot of money, including from Google. When the magic leap one headset was introduced in 2018, it was not a technological breakthrough in display technology that was once derided. Since then, Magic leap has persevered and has now signed a "multifaceted strategic technology partnership" with Google.Google announced ...

    2024-05-31
    See translation
  • Peking University has made significant progress in the field of photonic chip clocks

    Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for ...

    02-28
    See translation