English

Beyond Limits: The Amazing Power of Water in Laser Development

41
2024-02-26 14:20:25
See translation

Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.
Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and ultrafast science.


Intense white laser projects a brilliant rainbow
However, this pursuit faces challenges, especially in selecting suitable nonlinear media. Although traditional solid materials are efficient, they are susceptible to optical damage under peak power conditions. Although gas media have resistance to damage, they are usually inefficient and technically complex.

Innovative solutions using water as a nonlinear medium
Researchers from South China University of Technology have recently taken non-traditional measures to treat water as a nonlinear medium. Water is abundant and inexpensive, and can be protected from optical damage even under the influence of high-power lasers. As reported in the Journal of Advanced Photonics in the Golden Open Access journal, water induced spectral broadening involves enhanced self phase modulation and stimulated Raman scattering, resulting in a supercontinuum white laser with a bandwidth of 435nm and 10dB, covering an impressive range of 478-913nm.

Progress in Cooperation between Water and CPPLN
To further innovate, researchers combined water with chirped periodically polarized lithium niobate (CPPLN) crystals, which are known for their powerful second-order nonlinear power. This cooperative relationship not only expands the frequency range of supercontinuum white laser, but also flattens its output spectrum. According to Professor Zhi Yuan Li, the senior author of the study, "The cascaded water CPPLN module provides a long lifespan, high stability, and low cost technical route for achieving 'three high' white lasers with strong pulse energy, high spectral flatness, and ultra wide bandwidth."

The results of the water CPPLN cooperation are expected. The pulse energy of this ultra wideband ultra continuous spectrum light source is 0.6 mJ, with a 10 dB bandwidth spanning one octave (413-907nm), and it has potential in ultrafast spectroscopy and hyperspectral imaging. Zhi Yuan Li observed, "It provides high resolution of physical, chemical, and biological processes at extreme spectral bandwidths with high signal-to-noise ratio. It opens up an efficient pathway to create long-lived, highly stable, and cost-effective white light lasers with strong pulse energy, high spectral flatness, and ultra wideband, paving the way for new possibilities in scientific research and application."

Source: Sohu

Related Recommendations
  • Process practice of blue light semiconductor laser cladding copper on copper

    Laser Cladding, also known as laser cladding or laser cladding, is a method of adding cladding material to the surface of the substrate and using a high-energy density laser beam to melt it together with the thin layer on the surface of the substrate. It forms a metallurgical bonded additive cladding layer on the surface of the substrate, which can be used for surface strengthening and defect repa...

    2024-04-09
    See translation
  • The globalization of three-color laser technology will be further accelerated

    Recently, the IFA2023 Consumer Electronics Show in Berlin, Germany opened, Hisense exhibited "three-color laser projection family bucket" attracted the attention of media and tourists from all over the world.Since Hisense's young fashion brand Vidda launched a series of three-color laser projection, its accumulation based on three-color laser technology is competing globally and has become a...

    2023-09-04
    See translation
  • More evidence of cosmic gravitational wave background: Laser interferometer gravitational wave observatory composed of two detectors

    The gravitational wave background was first detected in 2016. This was announced after the release of the first dataset by the European pulsar timing array. The second set of data has just been released, combined with the timed array of Indian pulsars, and both studies have confirmed the existence of the background. The latest theory seems to suggest that we are seeing a comprehensive signal of th...

    2024-05-21
    See translation
  • MKS Instruments will build a factory in Malaysia

    Recently, American semiconductor equipment manufacturer MKS Instruments announced plans to build a factory in Penang, Malaysia to support the production of wafer manufacturing equipment in the region and globally. This development plan will be divided into three stages to build a new factory, and it is expected to break ground and start construction in early 2025.Why choose to build a factory in M...

    2024-06-26
    See translation
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    See translation