English

Beyond Limits: The Amazing Power of Water in Laser Development

1261
2024-02-26 14:20:25
See translation

Water helps to generate ultra continuous white lasers with an extremely wide wavelength range.
Researchers have made significant progress in creating ultra wideband white laser sources, which have a wide wavelength range from ultraviolet to far-infrared. These advanced lasers are used in various fields, including imaging, femtosecond chemistry, telecommunications, laser spectroscopy, sensing, and ultrafast science.


Intense white laser projects a brilliant rainbow
However, this pursuit faces challenges, especially in selecting suitable nonlinear media. Although traditional solid materials are efficient, they are susceptible to optical damage under peak power conditions. Although gas media have resistance to damage, they are usually inefficient and technically complex.

Innovative solutions using water as a nonlinear medium
Researchers from South China University of Technology have recently taken non-traditional measures to treat water as a nonlinear medium. Water is abundant and inexpensive, and can be protected from optical damage even under the influence of high-power lasers. As reported in the Journal of Advanced Photonics in the Golden Open Access journal, water induced spectral broadening involves enhanced self phase modulation and stimulated Raman scattering, resulting in a supercontinuum white laser with a bandwidth of 435nm and 10dB, covering an impressive range of 478-913nm.

Progress in Cooperation between Water and CPPLN
To further innovate, researchers combined water with chirped periodically polarized lithium niobate (CPPLN) crystals, which are known for their powerful second-order nonlinear power. This cooperative relationship not only expands the frequency range of supercontinuum white laser, but also flattens its output spectrum. According to Professor Zhi Yuan Li, the senior author of the study, "The cascaded water CPPLN module provides a long lifespan, high stability, and low cost technical route for achieving 'three high' white lasers with strong pulse energy, high spectral flatness, and ultra wide bandwidth."

The results of the water CPPLN cooperation are expected. The pulse energy of this ultra wideband ultra continuous spectrum light source is 0.6 mJ, with a 10 dB bandwidth spanning one octave (413-907nm), and it has potential in ultrafast spectroscopy and hyperspectral imaging. Zhi Yuan Li observed, "It provides high resolution of physical, chemical, and biological processes at extreme spectral bandwidths with high signal-to-noise ratio. It opens up an efficient pathway to create long-lived, highly stable, and cost-effective white light lasers with strong pulse energy, high spectral flatness, and ultra wideband, paving the way for new possibilities in scientific research and application."

Source: Sohu

Related Recommendations
  • AM Research has released its latest quarterly data and forecast report

    Recently, additive manufacturing research company AM Research released its latest quarterly data and forecast report, which deeply analyzes the latest developments in the global 3D printing market, covering multidimensional analysis of suppliers, printing technology, geographic location, and application areas.According to the report, the global 3D printing market once again demonstrates strong gro...

    2024-09-29
    See translation
  • Dr. Kenichi Iga wins awards in the field of lasers

    Dr. Kenichi Iga (85), Professor Emeritus at Tokyo University of Science, has been awarded the 2025 Honda Prize. The Honda Foundation announced that the award recognizes his outstanding contributions in proposing and advancing the commercialization of “surface-emitting lasers.” This type of semiconductor laser, characterized by its miniaturization, high-density integration, and low power consumptio...

    11-07
    See translation
  • BLM Group launches a new LT12 laser tube cutting system

    Recently, BLM Group in the United States has launched a new LT12 laser tube system, which performs well in cutting light and heavy pipes and profiles, and can handle materials with a diameter of up to 305 millimeters.According to the company, compared to other similar machines, the LT12 laser tube system reduces cutting time by up to 55% when cutting materials with the same maximum diameter, signi...

    2024-04-18
    See translation
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    See translation
  • Eurotech launches BestNet fiber rack mounting housing

    Fiber optic solution provider Eurotech announced the launch of a series of fiber optic rack mounting enclosures. The BestNet 19 inch top opening fiber optic interconnect unit is a fiber optic patch panel and cabinet, ideal for wiring, terminating, and managing fiber optic terminations, suitable for interconnect, cross connect, or splice applications in LAN environments. Modular fiber optic interco...

    2024-05-16
    See translation