English

Nat. Commun.: Two color orthogonal polarized organic light-emitting diode

1311
2024-02-29 14:25:32
See translation

In recent years, linearly polarized organic light-emitting diodes have greatly enriched the application scenarios of polarization optics and optoelectronics industries. The low-cost and large-area preparation of linearly polarized organic light-emitting diodes with high polarization, strong directional emission, narrow bandwidth, and multi-color adjustability is an important challenge in the current field, targeting 3D display, augmented reality/virtual reality, high-density data storage, and optical encryption.

Recently, a team led by Professor Liang Ningning and Professor Zhai Tianrui from Beijing Institute of Technology proposed a high-performance dual color orthogonal polarized organic light-emitting diode based on laser dual beam interference lithography and vacuum thermal evaporation method. This method successfully obtained a large-area dielectric/metal nano one-dimensional grating of 3 × 3 cm2. Through precise theoretical simulation and device design optimization, the orthogonal emission of high-intensity sky blue light transverse electric mode waveguide mode and green transverse magnetic mode waveguide mode of organic light-emitting diodes was achieved. Its excellent polarization extinction ratio has met commercial requirements; An organic light-emitting diode with dual color orthogonal polarization emission that combines high polarization extinction ratio, high external quantum efficiency, and directional emission has been achieved. The related achievements were published in the journal Nature Communications under the title "Dual color emissive OLED with orthogonal polarization modes".

To ensure the conductivity and transparency of the metal electrodes, researchers effectively determined the types and thicknesses of dielectrics and metal electrodes using the finite difference time domain method. A 100 nm MgF2 (100 nm)/25-nm Ag one-dimensional grating electrode with a period of 300 nm, a groove depth of 80 nm, and a size of 3 × 3cm2 was successfully prepared using laser dual beam interference lithography and vacuum thermal evaporation method, as shown in Figure 1. This work abandons the weak microcavity effect caused by the traditional OLED using transparent ITO as the anode, and forms a Fabry Perot microcavity by introducing a bimetallic electrode with high reflectivity; Combining the finite difference time domain method to achieve the maximum localization of the transverse polarization waveguide mode at a wavelength of 470 nm, as shown in Figures 2a-h. By introducing a one-dimensional grating, the Fabry Perot microcavity is effectively coupled with the grating microcavity to form different responses to transverse electric and transverse magnetic polarization waveguide modes, achieving strong 470 nm wavelength TE light and suppressed 500 nm wavelength TM light orthogonally polarized light emission, as shown in Figure 2i-o. The coupling theory of the coupling cavity is determined.

Figure 1. Design concept and specific preparation process diagram of dielectric/metal nanograting structure.

Figure 2. Simulation results of optical properties of planar OLED and corrugated OLED.

This work achieved the emission of horizontally polarized sky blue light with vertical emission, which has a polarization extinction ratio of 15.8 dB, a suppressed full width at half height of 28 nm, and a small angle emission of ± 30 °. At the same time, it achieved the emission of horizontally polarized green light; The proposed design concept can be extended to full color gamut linear polarization modulation with high extinction ratio and excellent external quantum efficiency, providing a powerful platform for manufacturing low-cost, large-area, and multi polarization multi-color luminescent LP-OLED for 3D display, augmented reality/virtual reality, high-density data storage, and optical encryption. Beijing University of Technology is the sole author of this paper, with Chen Ruixiang, a doctoral student from the School of Physics and Optoelectronic Engineering, as the first author, and Professor Liang Ningning and Professor Zhai Tianrui as co corresponding authors. This study was supported by the National Natural Science Foundation of China.

Figure 3. Performance results of planar OLED and corrugated OLED devices.

Figure 4. Spatial pattern display and development status of corrugated OLED.

Figure 5. Color image encryption application with coordinated control of polarization and color.

Source: Sohu

Related Recommendations
  • Future oriented strategic technology: integrated manufacturing of large composite materials with additive and subtractive materials and its key elements

    Thermowood has developed a large-scale additive and subtractive material manufacturing equipment, LSAM, and successfully printed tooling molds on site that can be used for aerospace composite material forming, demonstrating its low-cost and rapid response to composite material manufacturing capabilities to the public.As a large-scale component additive manufacturer, Thermowood has developed a near...

    2024-04-19
    See translation
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".Figure 1. Demonst...

    2024-10-26
    See translation
  • Optical properties of Xinggory Cy3.5 amine/NH2 labeling experiment

    The optical properties of the Cy3.5 amine labeling experiment are an important reason for its application in biomarkers and fluorescence imaging. Cy3.5 is a fluorescent dye belonging to the Cyanine dye family, with high molar extinction coefficient and quantum yield, making it excellent in trace analysis and fluorescence imaging.In the Cy3.5 amine labeling experiment, the dye covalently binds to s...

    2024-03-29
    See translation
  • 10.30 Shenzhen Munich South China Laser Exhibition awaits you

    The Munich South China Laser Exhibition is about to open!As a member exhibition of the South China International Intelligent Manufacturing, Advanced Electronics, and Laser Technology Expo (referred to as "LEAP Expo"), it will be held from October 30 to November 1, 2023 at the Shenzhen International Convention and Exhibition Center (Bao'an New Hall) in conjunction with the Munich South China Elect...

    2023-10-26
    See translation
  • Using laser welding technology to manufacture rotor shafts at the speed of light

    How can EMAG Laser Technology accelerate the production of critical powertrain components using its flagship product ELC 6 system?The rapid popularity of electric vehicles worldwide indicates that production planners must increase their efforts in producing key components of electric vehicles, particularly the rotor shaft. The importance of the rotor shaft as the core component for converting elec...

    2024-07-17
    See translation