English

Enhanced dielectric, electrical, and electro-optic properties: investigation of the interaction of dispersed CdSe/ZnS quantum dots in 8OCB liquid crystals in the intermediate phase

1157
2024-03-04 13:52:02
See translation

author
Elsa Lani, Aloka Sinha

abstract
At present, the progress in developing new liquid crystal materials for next-generation applications mainly focuses on improving the physical properties of liquid crystal systems.

Recent research progress has shown that functionalized nanoparticles embedded in LC matrix can significantly alter the properties of LC materials based on the interaction between host molecules and guest particles. In this regard, this study reports the effects of core-shell CdSe/ZnS quantum dot dispersion on the dielectric, electrical, and electro-optical properties of 8OCB LC doped with different concentrations. The doped samples exhibit ion release behavior, and this effect becomes more pronounced when the doping concentration in the liquid chromatography system increases to 0.2 wt%. It is explained that due to the enhanced interaction between QD ligands and rod-shaped LC molecules, quantum dots have obtained the form of growing handle shaped ellipsoids.

Among all the studied samples, significant temperature changes were observed in the diffusion constant, conductivity, ion mobility, and average relaxation time of ions. In addition, the thermal distribution of dielectric anisotropy, threshold voltage, and opening elastic constant all show a decreasing trend, with an increasing doping concentration. The dual relaxation mechanisms of corresponding nematic and dimeric materials were experimentally studied, providing two rotational viscosities in both the original and quantum dot dispersed LC samples. The transmittance voltage curve reveals the presence of residual values in dispersed samples and is related to the volatile memory effect. In the original liquid chromatography system, the photoluminescence intensity of low doped samples was slightly enhanced and further decreased with increasing doping concentration.

All these findings indicate that functionalized quantum dots make a significant contribution to the studied performance in terms of the interaction between LC and doped materials. This study will further elucidate the potential application of quantum dots in future liquid chromatography-based devices and the selection of optimal quantum dot concentrations based on their properties.

Graph Summary

Source: Laser Net

Related Recommendations
  • A major investment! Lumentum completes acquisition of research and development site in Carswell, UK

    Lumentum, a leading designer and manufacturer of innovative optical and photonic products, has announced that it has completed the acquisition of a site in Caswell, UK.Lumentum revealed that it has made significant investments in the site over the past two years and is currently undergoing development upgrades for its state-of-the-art cleanrooms and laboratories to continue to support the developm...

    2023-09-13
    See translation
  • Research Progress: Extreme Ultraviolet Photolithography

    Recently, the semiconductor industry has adopted Extreme Ultraviolet Lithography (EUVL) technology. This cutting-edge photolithography technology is used for the continuous miniaturization of semiconductor devices to comply with Moore's Law. Extreme ultraviolet lithography (EUVL) has become a key technology that utilizes shorter wavelengths to achieve nanoscale feature sizes with higher accuracy a...

    2024-12-09
    See translation
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    See translation
  • Coherent develops borderless display cutting technology

    Coherent utilizes deep ultraviolet laser technology to study and improve the cutting process of displays, but the production of such displays is still very complex.Coherent, the host of the Mid-Europe Chapter Conference of the Society of Information Display (SID-MEC Conference) in Germany, has offered a look at its plans for improved display cutting. As a provider of laser solutions, the Göttingen...

    11-06
    See translation
  • Turn to 4-inch wafers! Dutch Photonics Integrated Circuit Enterprise Announces Production Expansion and Price Reduction

    Recently, SMART Photonics, a Dutch photonic integrated circuit manufacturer, announced a major decision to transfer its entire production capacity from 3-inch wafers to 4-inch silicon substrates, thereby expanding the production scale of photonic chips and significantly reducing chip prices.According to the company, SMART Photonics is one of the first photonic integrated circuit foundries to provi...

    2024-02-03
    See translation