English

Enhanced dielectric, electrical, and electro-optic properties: investigation of the interaction of dispersed CdSe/ZnS quantum dots in 8OCB liquid crystals in the intermediate phase

712
2024-03-04 13:52:02
See translation

author
Elsa Lani, Aloka Sinha

abstract
At present, the progress in developing new liquid crystal materials for next-generation applications mainly focuses on improving the physical properties of liquid crystal systems.

Recent research progress has shown that functionalized nanoparticles embedded in LC matrix can significantly alter the properties of LC materials based on the interaction between host molecules and guest particles. In this regard, this study reports the effects of core-shell CdSe/ZnS quantum dot dispersion on the dielectric, electrical, and electro-optical properties of 8OCB LC doped with different concentrations. The doped samples exhibit ion release behavior, and this effect becomes more pronounced when the doping concentration in the liquid chromatography system increases to 0.2 wt%. It is explained that due to the enhanced interaction between QD ligands and rod-shaped LC molecules, quantum dots have obtained the form of growing handle shaped ellipsoids.

Among all the studied samples, significant temperature changes were observed in the diffusion constant, conductivity, ion mobility, and average relaxation time of ions. In addition, the thermal distribution of dielectric anisotropy, threshold voltage, and opening elastic constant all show a decreasing trend, with an increasing doping concentration. The dual relaxation mechanisms of corresponding nematic and dimeric materials were experimentally studied, providing two rotational viscosities in both the original and quantum dot dispersed LC samples. The transmittance voltage curve reveals the presence of residual values in dispersed samples and is related to the volatile memory effect. In the original liquid chromatography system, the photoluminescence intensity of low doped samples was slightly enhanced and further decreased with increasing doping concentration.

All these findings indicate that functionalized quantum dots make a significant contribution to the studied performance in terms of the interaction between LC and doped materials. This study will further elucidate the potential application of quantum dots in future liquid chromatography-based devices and the selection of optimal quantum dot concentrations based on their properties.

Graph Summary

Source: Laser Net

Related Recommendations
  • Scientists Developing New Low Cost Manufacturing Technologies for High Resolution Optical Components

    Scientists from Leibniz University in Hanover have pioneered the development of a new manufacturing technology - UV LED based microscopy projection lithography. This technology is expected to completely change the manufacturing method of optical components, providing high resolution at lower cost and ease of use. The MPP system utilizes the power of UV LED light sources to transcribe the structura...

    2024-01-06
    See translation
  • Manufacturing customized micro lenses with optical smooth surfaces using fuzzy tomography technology

    Additive manufacturing, also known as 3D printing, has completely changed many industries with its speed, flexibility, and unparalleled design freedom. However, previous attempts to manufacture high-quality optical components using additive manufacturing methods often encountered a series of obstacles. Now, researchers from the National Research Council of Canada have turned to fuzzy tomography (a...

    2024-05-30
    See translation
  • Making Infrared Light Visible: New Equipment Utilizes 2D Materials to Convert Infrared Light

    Infrared imaging and sensing technology can be used in various fields, from astronomy to chemistry. For example, when infrared light passes through a gas, sensing changes in light can help scientists identify specific properties of the gas. The use of visible light may not always achieve this sensing.However, existing infrared sensors are bulky and inefficient. In addition, due to the use of infra...

    2024-06-24
    See translation
  • The world's first 40000 watt groove laser cutting machine is put into production in China

    On the morning of August 26th, the world's first large-scale 40000 watt groove laser cutting machine production ceremony was successfully held at Shandong Century Zhenghua Metal Technology Co., Ltd. located in Zhoucun District, adding another boost to the rapid development of Zhoucun's stainless steel industry chain.Source:博览新闻

    2023-08-28
    See translation
  • Laser photonics helps simplify maintenance processes in the mining industry

    Laser Photonics Corporation (LPC) is a leading global developer of industrial laser systems for cleaning and other material processing applications, emphasizing the critical applications of its industrial laser cleaning systems in the mining industry.Laser Photonics provides a user-friendly, ethical, cost-effective, and time-saving solution for professionals in the mining industry to maintain heav...

    2024-06-14
    See translation