English

The research team has developed a mechanical luminescent touch screen that can work underwater

1283
2024-03-08 14:41:11
See translation

The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.

The team is composed of Professor Sei Kwang Hahn from the Department of Materials Science and Engineering at POSTECH and doctoral student Seong Jong Kim, who discovered a unique optical phenomenon in ALP. Subsequently, they successfully created a device to achieve this phenomenon. Their research results have been published in Advanced Functional Materials.

ALP has the ability to absorb energy and gradually release it, exhibiting mechanical luminescence when subjected to external physical pressure, and undergoing mechanical quenching when the emitted light disappears. Although active research has been conducted on the use of this technology for optical displays, the precise mechanism remains elusive.

In this study, the team delved into the effects of electron capture and charging on mechanical luminescence and quenching. They successfully unraveled the mechanisms that control these two phenomena. Based on this understanding, they will be able to achieve both phenomena simultaneously by combining ALP with very thin polymer materials. This combination leads to the creation of optical display patches that can be attached to the skin.

Display patches can convey information through writing by applying a small amount of pressure to the fingers. When exposed to ultraviolet light, the patch will reset to a blank state, similar to using an eraser to erase the content of a sketchbook. In addition, the touch screen of the display screen has moisture resistance and can maintain its function even after prolonged immersion in water.

Professor Sei Kwang Hahn, who led the research, said, "It can serve as a communication tool in situations where communication options are limited, such as underwater environments characterized by weak light or high humidity. It will also be used in wearable photon biosensors and phototherapy systems in extreme environments.".

Source: Laser Net

Related Recommendations
  • 92 new premium members have joined SPIE

    SPIE, the international society for optics and photonics, has welcomed 92 new Senior Members from 19 countries. SPIE Senior Members are Society Members of distinction who are recognized for their professional experience and technical accomplishments, their active involvement with the optics community and with SPIE, and for significant performance that sets them apart from their peers.The newly rec...

    08-01
    See translation
  • UCI Cinemas collaborates with The Marvels to launch its new 4K laser projector

    Cinemas are in a developmental stage. Their roles are changing and the rules are being rewritten. Many people have proposed a way to make cinemas a truly unique place by providing audiences with a higher quality experience. It is along this route that UCI Cinemas continues to move forward. In recent days, it has officially launched a 4K laser projector and had a special date with the new MCU movie...

    2023-11-14
    See translation
  • Using attosecond pulses to reveal new information about the photoelectric effect

    Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between ele...

    2024-09-02
    See translation
  • Oxford University develops technology for capturing strong laser pulses in one go

    Physicists at the University of Oxford have unveiled a “pioneering” method for capturing the full structure of ultra-intense laser pulses in a single measurement. The breakthrough, a collaboration with Ludwig-Maximilian University of Munich and the Max Planck Institute for Quantum Optics, could revolutionize the ability to control light-matter interactions, say the team.The Oxford announcement sta...

    07-07
    See translation
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    See translation