English

DataLase launches a new laser active transparent to white coating

1169
2024-03-09 14:31:49
See translation

Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.

These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. This series includes transfer printing coatings for directly marking the shape of objects, such as bottles and bottle caps.

This multifunctional coating can also be used for folding paper boxes, flexible films, foils, small bags, and labels. High opacity, clear laser printing quality, and QR code readability can be achieved on a range of lasers, providing CO2, fiber, and UV lasers.

Compared to laser ablation, these coatings can eliminate ink debris, odors, and exhaust gases, making them suitable for sterile packaging. They also extend the lifespan of common filters and extraction equipment in printing lines. In addition, compared to laser ablation, coatings allow for faster laser imaging, thereby increasing production yield and extending laser lifespan at lower laser power.

Uniquely, these coatings provide white markings through a metal free natural alternative, with titanium dioxide commonly used in traditional and digital inks. This sustainable chemical composition and the resulting coatings are widely protected by exclusive patents held by DataLase. This comprehensive patent protection ensures a high degree of assurance in the supply chain.

Ally Grant, Chief Technology Officer of DataLase, stated, "Based on the high expectations set by our market leading paint and pigment technology, our innovative transparent to white coatings aim to reduce consumables and waste in the production environment. They not only increase production and productivity, but also have wear and friction resistance, thereby minimizing the need for potential rework and further waste.".

These coatings have a wide range of uses and are sufficient to meet product coding applications in various industries, including food and beverage, home and personal care, pharmaceuticals, and healthcare. They are compatible with a variety of substrates such as film materials, paper, and plastics, making them ideal for use in small bags, laminates, and bottles.

Source: Laser Net

Related Recommendations
  • New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

    Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published i...

    2023-10-13
    See translation
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    See translation
  • Shandong Zhancheng Intelligent Manufacturing Laser Cutting Equipment is Popular Overseas

    The high-end laser cutting machine developed and produced by Dongying Lijin Zhancheng Laser Intelligent Manufacturing Company has become popular in overseas markets this spring. This equipment can not only use laser to quickly cut steel, but also freely swing on steel, "showing" beautiful pictures. The laser travels like a paintbrush flying, and the hard steel plate has been hollowed out into be...

    03-21
    See translation
  • Ultra capillary properties of composite liquid absorbing cores manufactured by laser powder bed melting additive manufacturing

    Researchers from Sichuan University, the Key Laboratory of Advanced Special Materials and Preparation Processing Technology of the Ministry of Education, and the Nuclear Additive Manufacturing Laboratory of China Nuclear Power Research and Design Institute reported on the study of the ultra capillary performance of laser powder bed melting additive manufacturing composite structure liquid absorbin...

    03-20
    See translation
  • Research progress and prospects of CFRP laser surface cleaning

    Researchers from Materials Science at Harbin Institute of Technology, Zhengzhou Research Institute at Harbin Institute of Technology, and Key Laboratory of Microsystems and Microstructure Manufacturing at Harbin Institute of Technology, Ministry of Education, reviewed and reported on the research progress of laser surface cleaning of carbon fiber reinforced polymer composites (CFRP). The relevant ...

    03-06
    See translation