English

Fulu and Longview begin design work on laser melting devices

381
2024-03-13 10:47:50
See translation

Longview Fusion Energy Systems and Fluor have taken another step towards commercialization of laser fusion power plants.
According to the memorandum of understanding signed by the two companies, Fulu will design the factory for Longview Fusion Energy Systems. The two companies collaborated and signed a memorandum of understanding in 2023 to leverage Fulu's experience in developing and constructing large and complex facilities. Fulu will provide preliminary design and engineering to support the development of the Longview nuclear fusion power plant.

According to Longview, their laser fusion power plant has a capacity between 1000 and 1600 megawatts. They can meet the needs of small cities or provide process heat or electricity to drive the industrial production of materials required for operational necessities such as steel, fertilizers, and hydrogen fuel.

Longview stated that it does not require the construction of physical demonstration facilities and can focus on designing and building the world's first laser fusion energy plant with its partner Fluor.

Valerie Roberts, Chief Operating Officer and former NIF Construction/Project Manager at Longview, said, "We are building upon the success of NIF, but the Longview factory will use today's more efficient and powerful lasers and utilize additive manufacturing and optimization through artificial intelligence.".

The breakthrough in fusion energy gain at the Lawrence Livermore National Laboratory's national ignition facility has enabled the planning of a laser fusion factory to be realized.

"In the past 15 months, the energy gain of laser fusion has been proven multiple times, and the scientific community has verified these successes," said Edward Moses, CEO of Longview and former director of NIF. "It's time to focus on providing this new carbon free, safe, and abundant energy to the whole country as soon as possible."

According to Lawrence Livermore National Laboratory, in the NIF ignition experiment, a small capsule containing two types of hydrogen gas was suspended in a cylindrical X-ray "oven" called Hohlraum.

NIF's powerful laser heats Hohlraum to temperatures exceeding 3 million degrees Celsius, causing X-rays to heat and blow off the surface of the target capsule. This can lead to an implosion similar to a rocket, compressing and heating the fuel to extreme temperatures and densities until hydrogen atoms fuse and release energy.

In December 2022, the national ignition facility achieved fusion ignition, which was the first fusion ignition to generate energy greater than input energy.

Source: Laser Net

Related Recommendations
  • A German 3D printing company applies for bankruptcy

    On February 5th, it was reported that Q BIG 3D GmbH filed for bankruptcy on January 31, 2025. The Ludwigsburg District Court has ordered temporary bankruptcy administration and appointed Mr. Ilkin Bananyarli of PLUTA Rechtsanwarts GmbH as the temporary bankruptcy administrator.The company was founded in 2019 and focuses on large format particle 3D printing systems, providing additive manufacturing...

    02-06
    See translation
  • Nanjing University of Science and Technology has made new progress in the field of programmable lensless holographic cameras

    Recently, Professor Chen Qian and Professor Zuo Chao's research group from the School of Electronic Engineering and Optoelectronic Technology at Nanjing University of Science and Technology proposed a minimalist optical imaging method based on programmable masks - programmable Fresnel zone aperture lensless imaging technology. The related achievement, titled "Lensless Imaging with a Programmable F...

    04-14
    See translation
  • Research progress and prospects of CFRP laser surface cleaning

    Researchers from Materials Science at Harbin Institute of Technology, Zhengzhou Research Institute at Harbin Institute of Technology, and Key Laboratory of Microsystems and Microstructure Manufacturing at Harbin Institute of Technology, Ministry of Education, reviewed and reported on the research progress of laser surface cleaning of carbon fiber reinforced polymer composites (CFRP). The relevant ...

    03-06
    See translation
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    See translation
  • Amada launches latest precision laser welding workstation wl-300a

    Recently, Amada weld tech Inc., a Japanese supplier of welding and cutting solutions, grandly launched a new wl-300a precision laser welding workstation, which is equipped with advanced continuous wave (CW) or quasi continuous wave (QCW) fiber lasers. It has a wide range of applications, especially for metal welding and processing of selected plastic materials, especially in the aerospace field.Wl...

    2024-05-31
    See translation