English

Researchers use desktop laser systems to generate ultrafast electrons

94
2024-03-14 14:50:56
See translation

In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.

Traditionally, laser based particle accelerators require expensive lasers and are included in large national facilities. Such a complex setup can accelerate electrons to megaelectron volts of energy. However, can a simpler laser, which costs only a small part of the current lasers, be used to design similar particle acceleration schemes?

In an exciting leap, scientists from the Batata Institute in Hyderabad have designed an elegant solution to successfully generate MeV at a temperature that is only a small fraction of what was previously considered necessary laser intensity.
The research results are published in the journal Communication Physics.

This technology achieves two laser pulses; Firstly, a small controlled explosion is generated in the droplet, followed by a second pulse that accelerates the electrons to megaelectron volt energy. What's even more exciting is that they achieved this with 100 times less laser than what was previously considered necessary, making it easier to obtain and more versatile in future research. The impact of this discovery may be enormous, as it can generate high-energy electron beams for applications such as non-destructive testing, imaging, tomography, and microscopy, and may have an impact on materials science and bioscience.

The device developed by TIFRH researchers uses a millijoule level laser, emitting at a rate of 1000 pulses per second, with an ultra short pulse of 25 fs, for dynamically chiseling out a diameter of 15 μ Microdroplets of m. This dynamic target shaping involves the collaborative work of two laser pulses. The first pulse forms a concave surface in the droplet, while the second pulse drives an electrostatic plasma wave, pushing electrons towards MeV energy.

Electrostatic waves are oscillations in plasma, much like mechanical disturbances generated in a pool when passing through a stone. Here, the laser generates disturbances in the electronic ocean and generates an "electronic tsunami". The tsunami ruptures and produces high-energy electrons, just like the splashing of waves on the coast. This process produces not one, but two electron beams, each with different temperature components: 200 keV and 1 MeV.

This innovation generates a directed electron beam of over 4 MeV through a desktop suitable laser, making it a game changer for time-resolved and microscopic research across different scientific fields.

Source: Laser Net

Related Recommendations
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    See translation
  • Vector Photonics accelerates the commercialization of PCSEL laser technology

    Recently, Vector Photonics, a well-known surface coupled laser technology supplier in the UK, announced that the company has received £ 3 million in financing (including £ 1.667 million in equity investment and £ 1.27 million in additional research funding, equivalent to approximately RMB 27.63 million) to help commercialize its surface coupled laser technology.(Image source: Vector Photonics)Vect...

    2024-07-04
    See translation
  • The green and blue laser diode series provides higher beam quality

    Rutronik has expanded its optoelectronic product portfolio by introducing green and blue laser diodes packaged in metal cans TO38 and TO56 using AM OSRAM. They leave a deep impression with improved beam quality and stricter electro-optic tolerances. The power level of the laser diode ranges from 10mW to 100mW. Diodes such as PLT3 520FB and PLT5 450GB are now available on the market.The flexibility...

    2024-01-31
    See translation
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    See translation
  • Shanghai Optical Machinery Institute has made progress in high-efficiency optical parametric amplification technology

    Recently, a joint research team composed of Sun Meizhi, associate researcher of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, and Tu Xiaoniu, associate researcher of the Chinese Academy of Sciences Shanghai Institute of Silicate, proposed a new configuration of cross Fabry Perot intracavity optical parametric ...

    2024-07-11
    See translation