English

Researchers use desktop laser systems to generate ultrafast electrons

1037
2024-03-14 14:50:56
See translation

In a mass particle accelerator, subatomic particles are accelerated to ultrahigh speeds that are comparable to the speed of light towards the target surface. The accelerated collision of subatomic particles produces unique interactions, enabling scientists to gain a deeper understanding of the fundamental properties of matter.

Traditionally, laser based particle accelerators require expensive lasers and are included in large national facilities. Such a complex setup can accelerate electrons to megaelectron volts of energy. However, can a simpler laser, which costs only a small part of the current lasers, be used to design similar particle acceleration schemes?

In an exciting leap, scientists from the Batata Institute in Hyderabad have designed an elegant solution to successfully generate MeV at a temperature that is only a small fraction of what was previously considered necessary laser intensity.
The research results are published in the journal Communication Physics.

This technology achieves two laser pulses; Firstly, a small controlled explosion is generated in the droplet, followed by a second pulse that accelerates the electrons to megaelectron volt energy. What's even more exciting is that they achieved this with 100 times less laser than what was previously considered necessary, making it easier to obtain and more versatile in future research. The impact of this discovery may be enormous, as it can generate high-energy electron beams for applications such as non-destructive testing, imaging, tomography, and microscopy, and may have an impact on materials science and bioscience.

The device developed by TIFRH researchers uses a millijoule level laser, emitting at a rate of 1000 pulses per second, with an ultra short pulse of 25 fs, for dynamically chiseling out a diameter of 15 μ Microdroplets of m. This dynamic target shaping involves the collaborative work of two laser pulses. The first pulse forms a concave surface in the droplet, while the second pulse drives an electrostatic plasma wave, pushing electrons towards MeV energy.

Electrostatic waves are oscillations in plasma, much like mechanical disturbances generated in a pool when passing through a stone. Here, the laser generates disturbances in the electronic ocean and generates an "electronic tsunami". The tsunami ruptures and produces high-energy electrons, just like the splashing of waves on the coast. This process produces not one, but two electron beams, each with different temperature components: 200 keV and 1 MeV.

This innovation generates a directed electron beam of over 4 MeV through a desktop suitable laser, making it a game changer for time-resolved and microscopic research across different scientific fields.

Source: Laser Net

Related Recommendations
  • University of California, Los Angeles Joins the American High Power Laser Facility Alliance

    The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.The Phoenix Laser Laboratory at the Uni...

    2023-09-15
    See translation
  • Scientists develop high-power fiber lasers to power nanosatellites

    The use of lasers in space is a reality. Although radio waves have been the backbone of space communication for many years, the demand for faster transmission of more data has made these lighter, more flexible, and safer infrared rays the future of space communication.Recently, WipThermal is a European project dedicated to developing groundbreaking solutions for wireless energy transmission in the...

    2024-01-18
    See translation
  • MKS Instruments will build a factory in Malaysia

    Recently, American semiconductor equipment manufacturer MKS Instruments announced plans to build a factory in Penang, Malaysia to support the production of wafer manufacturing equipment in the region and globally. This development plan will be divided into three stages to build a new factory, and it is expected to break ground and start construction in early 2025.Why choose to build a factory in M...

    2024-06-26
    See translation
  • Cambridge University researchers use lasers to "heat and strike" 3D printed steel

    According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousand...

    2023-11-03
    See translation
  • Exail acquires optical company Leukos

    Recently, exail (formerly iXblue) announced the acquisition of Leukos, an optical company specializing in providing advanced laser sources for metrology, spectroscopy, and imaging applications.Leukos was founded by the French XLIM Institute (a joint research department of the French National Academy of Sciences and the University of Limoges), with over 20 years of professional experience in the re...

    01-13
    See translation