English

Coherent Company Announces the Launch of High Power Non Cooled G10 Pumped Laser Module for Submarine and Ground Applications

1137
2024-03-23 10:21:42
See translation

Coherent, a leading supplier of high-performance optical network solutions, announced today the launch of a new high-power non cooled pump laser module based on the latest G10 series semiconductor laser tube technology. These new modules are specifically developed for high reliability submarine applications as well as single chip and dual chip ground applications.

The new non cooled pump laser module is designed specifically for high-power, high-performance optical amplifiers and amplification ROADM line card applications. The non cooled pumped laser module adopts a compact 10 pin external size, which is market first:
Up to 1000 mW output power, suitable for submarine applications.
Up to 2x700 mW, providing both symmetric and asymmetric options on dual chip platforms.

These non cooling modules support the growth trend of energy-saving networks to achieve sustainable development goals. This reduces network ownership costs by reducing overall power consumption and eliminating many thermal and power management devices associated with traditional cooling lasers.

"The company released its first non cooled pump laser module in 2004 and its first dual chip module in 2011, making it a leader in non cooled and dual chip technologies," said Dr. Beck Mason, Executive Vice President of Telecommunications. Our latest G10 pump chip supports the successful development of our high-power non cooled pump laser modules. Combining a wide range of active and passive component product combinations, Coherent provides a leading solution portfolio for submarine and ground amplifier designers.

The certification work for the new single chip and dual chip ground modules will be completed by mid-2024. The samples have been launched and will begin mass production by the end of 2024.

Source: Laser Net

Related Recommendations
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    See translation
  • Lidar manufacturer RAYZ has completed a round A financing of nearly 100 million yuan

    Recently, RAYZ, a leading research and production company for high-performance LiDAR, announced the successful completion of the A-round financing. This round of financing was led by SMIC Juyuan, and well-known institutions such as Juntong Capital, Feitu Capital, Qiandao Investment, and Qiyu Chuangying also participated in this round of financing. The new round of financing will be used for the re...

    2023-10-20
    See translation
  • Scientists have developed a solar cell that can bend and soak in water

    Researchers and their partners at the RIEKN Creative Physical Science Research Center have created a flexible and waterproof organic photovoltaic film. This innovative thin film can integrate solar cells into clothing, maintaining functionality even in rainwater or washing cycles.One of the potential uses of organic photovoltaic technology is to manufacture wearable electronic devices that can be ...

    2024-05-08
    See translation
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    See translation
  • Researchers have discovered new multiphoton effects in quantum interference of light

    An international research team from Leibniz University in Hanover and Strathclyde University in Glasgow overturned the previous hypothesis about the influence of multiphoton components in the thermal field and the interference effect of parameterized single photons. The journal Physical Review Letters published the team's research."We have demonstrated through experiments that the interference eff...

    2024-01-24
    See translation