English

Breakthrough in optical quantum simulation using long-lived polariton droplets

1256
2024-03-27 16:35:32
See translation

Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and reconfigurability after optical manipulation.

Researchers specializing in quantum physics have made significant strides in stabilizing light based quantum fluids, marking an advancement in the simulation of complex systems. This success was achieved through the adoption of a new type of photonic grating technology on semiconductors.
This stability is achieved by connecting quantum light droplets into so-called "macroscopic coherent states". Essentially, scientists have demonstrated a technique that allows the use of light to simulate the interactions between synthetic atoms of various configurations. This innovative method greatly expands the potential for researchers to explore multi-body quantum phenomena in greater depth.

Part of the achievement stems from creating a bound state for polaritons in continuous media, which makes them less susceptible to radiation loss and endows them with effective negative mass. This keeps the polaritons stable and less prone to decay, despite the need for sustained laser pumping.

Polarized polariton droplets are made to interact and merge into broader, optically programmable complexes, paving the way for extensive experimental research on phenomena such as structured nonlinear lasers and quantum simulations.

Researchers are optimistic about the prospects of this technology. A unique discovery is the different interactions between polariton droplets within and near the grating plane, indicating interesting possibilities for observing new synchronous behaviors and modes in quantum fluids. This work is funded by the National Science Center of the United States and the Horizon 2020 research framework of the European Union.

The field of quantum physics has taken a significant step forward, as scientists from CNR Nanotec and the University of Warsaw have made significant breakthroughs in creating long-lived quantum fluids. Their research, published in the journal Nature Physics, highlights an exciting new method of generating stable quantum fluids through semiconductor photonic gratings. These polariton droplets exhibit great stability in terms of lifespan and can be reconfigured as needed using optical operations.

The essence of this discovery lies in its ability to maintain macroscopic coherence between quantum light droplets, providing a better method for simulating interactions between synthesized atoms. This simulation of multi-body quantum phenomena has enormous potential to expand our understanding of the quantum world.

One of the main features of this technology is the generation of bound states for polaritons in a continuous medium, which helps prevent radiation loss and effectively endow these particles with negative mass. This feature ensures better stability of polaritons, allowing for continuous exploration even if regular optical pumping is required.

With the continuous growth of the industry, market forecasts indicate an increasing interest in quantum technology, including quantum computing, secure communication, and sensing applications. It is expected that the quantum technology market will significantly expand in the coming years, with the potential to achieve breakthroughs, thereby completely changing various fields such as cybersecurity, finance, drug development, and materials science.

However, the industry faces some challenges, including implementing practical and scalable quantum systems, managing decoherence, and creating sustainable economic models for quantum technology enterprises. These obstacles highlight the necessity of continuous investment in research and development.

In short, the study of quantum fluids is only one of the rapidly developing fields in the quantum industry. The significance of this study is a significant and promising advancement in quantum simulation, which can uncover new insights into complex quantum systems. This study not only represents scientific progress, but also an important step towards the practical application of quantum principles in various technologies. With the continuous development of the quantum industry, it will bring breakthrough changes that will affect the future of the technology we know.

Source: Laser Net

Related Recommendations
  • Tsinghua University has made progress in the field of magnetic field and laser composite processing

    The National Key Laboratory of Interface Science and Technology for High end Equipment at Tsinghua University has made progress in the field of magnetic field and laser composite processing - magnetic field assisted laser shock strengthening of Ti6Al4V alloy. The relevant research was published as a cover article titled "Magnetic Field Assisted Laser Shock Peening of Ti6Al4V Alloy" in the journal ...

    2023-09-16
    See translation
  • TDK introduces a new gold-wire-bonded optional NTC thermistor for laser diode temperature measurement

    TDK Corporation (TSE: 6762) announced the introduction of the new NTCWS series of NTC thermistors with gold wire bonding. These bonding NTC thermistors can be installed in packages via gold wire bonding to enable high precision temperature detection of laser diodes (LD) for optical communication. The series will begin mass production in September 2023.The use of LD devices in optical communication...

    2023-09-08
    See translation
  • Laser engraving: Researchers have created a revolutionary technology

    Recently, a group of researchers from the University of Cambridge developed an innovative method of using high-energy lasers to improve 3D printing of metals. This discovery has the potential to change the way we design and manufacture complex metal objects.3D printing has completely changed the landscape of the manufacturing industry. However, it faces obstacles, especially in terms of the charac...

    2023-11-24
    See translation
  • The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

    Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals.In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However,...

    2023-08-24
    See translation
  • The ECSTATIC fiber optic project worth 5.1 million euros aims to prevent bridge collapse

    A new European research project is exploring whether the same fibre-optic cables that carry our internet could also serve as real-time sensors for hidden damage in infrastructure, including bridges, railways, tunnels and energy pipelines. The €5.1 million ECSTATIC project, coordinated by Aston University in the UK, is trialling this breakthrough approach in a major UK city, using a heavily-used...

    08-18
    See translation