English

Breakthrough in optical quantum simulation using long-lived polariton droplets

1063
2024-03-27 16:35:32
See translation

Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and reconfigurability after optical manipulation.

Researchers specializing in quantum physics have made significant strides in stabilizing light based quantum fluids, marking an advancement in the simulation of complex systems. This success was achieved through the adoption of a new type of photonic grating technology on semiconductors.
This stability is achieved by connecting quantum light droplets into so-called "macroscopic coherent states". Essentially, scientists have demonstrated a technique that allows the use of light to simulate the interactions between synthetic atoms of various configurations. This innovative method greatly expands the potential for researchers to explore multi-body quantum phenomena in greater depth.

Part of the achievement stems from creating a bound state for polaritons in continuous media, which makes them less susceptible to radiation loss and endows them with effective negative mass. This keeps the polaritons stable and less prone to decay, despite the need for sustained laser pumping.

Polarized polariton droplets are made to interact and merge into broader, optically programmable complexes, paving the way for extensive experimental research on phenomena such as structured nonlinear lasers and quantum simulations.

Researchers are optimistic about the prospects of this technology. A unique discovery is the different interactions between polariton droplets within and near the grating plane, indicating interesting possibilities for observing new synchronous behaviors and modes in quantum fluids. This work is funded by the National Science Center of the United States and the Horizon 2020 research framework of the European Union.

The field of quantum physics has taken a significant step forward, as scientists from CNR Nanotec and the University of Warsaw have made significant breakthroughs in creating long-lived quantum fluids. Their research, published in the journal Nature Physics, highlights an exciting new method of generating stable quantum fluids through semiconductor photonic gratings. These polariton droplets exhibit great stability in terms of lifespan and can be reconfigured as needed using optical operations.

The essence of this discovery lies in its ability to maintain macroscopic coherence between quantum light droplets, providing a better method for simulating interactions between synthesized atoms. This simulation of multi-body quantum phenomena has enormous potential to expand our understanding of the quantum world.

One of the main features of this technology is the generation of bound states for polaritons in a continuous medium, which helps prevent radiation loss and effectively endow these particles with negative mass. This feature ensures better stability of polaritons, allowing for continuous exploration even if regular optical pumping is required.

With the continuous growth of the industry, market forecasts indicate an increasing interest in quantum technology, including quantum computing, secure communication, and sensing applications. It is expected that the quantum technology market will significantly expand in the coming years, with the potential to achieve breakthroughs, thereby completely changing various fields such as cybersecurity, finance, drug development, and materials science.

However, the industry faces some challenges, including implementing practical and scalable quantum systems, managing decoherence, and creating sustainable economic models for quantum technology enterprises. These obstacles highlight the necessity of continuous investment in research and development.

In short, the study of quantum fluids is only one of the rapidly developing fields in the quantum industry. The significance of this study is a significant and promising advancement in quantum simulation, which can uncover new insights into complex quantum systems. This study not only represents scientific progress, but also an important step towards the practical application of quantum principles in various technologies. With the continuous development of the quantum industry, it will bring breakthrough changes that will affect the future of the technology we know.

Source: Laser Net

Related Recommendations
  • Shanghai Optics and Machinery Institute has made progress in the research of new terahertz sources based on Yb lasers

    Recently, the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in generating intense field terahertz waves based on Yb laser pumped organic crystals. The relevant research results were published in Applied Physics Letters under the title "Efficient strong field THz generation from DSTMS crys...

    2024-04-09
    See translation
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    See translation
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    See translation
  • Westlake University has made significant breakthroughs in the field of flexible stacked solar cells

    Recently, the team led by Wang Rui from the Future Industry Research Center and the School of Engineering at Xihu University has made significant breakthroughs in the field of flexible stacked solar cells. They have successfully stacked perovskite and copper indium gallium selenide materials together, resulting in a photoelectric conversion efficiency of 23.4%. The related research paper was recen...

    02-05
    See translation
  • Statsndata predicts that the light detection and ranging market will experience vigorous development globally in 2029

    The Light Detection and Ranging (LiDAR) market embodies the technology of remote sensing, surveying, and the use of laser pulses to measure distance and generate detailed three-dimensional models of objects, terrain, and environment.The LiDAR system emits a laser beam and measures the time required for the light to return to the surface, creating accurate and high-resolution digital representation...

    2023-08-31
    See translation