English

Breakthrough in optical quantum simulation using long-lived polariton droplets

67
2024-03-27 16:35:32
See translation

Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and reconfigurability after optical manipulation.

Researchers specializing in quantum physics have made significant strides in stabilizing light based quantum fluids, marking an advancement in the simulation of complex systems. This success was achieved through the adoption of a new type of photonic grating technology on semiconductors.
This stability is achieved by connecting quantum light droplets into so-called "macroscopic coherent states". Essentially, scientists have demonstrated a technique that allows the use of light to simulate the interactions between synthetic atoms of various configurations. This innovative method greatly expands the potential for researchers to explore multi-body quantum phenomena in greater depth.

Part of the achievement stems from creating a bound state for polaritons in continuous media, which makes them less susceptible to radiation loss and endows them with effective negative mass. This keeps the polaritons stable and less prone to decay, despite the need for sustained laser pumping.

Polarized polariton droplets are made to interact and merge into broader, optically programmable complexes, paving the way for extensive experimental research on phenomena such as structured nonlinear lasers and quantum simulations.

Researchers are optimistic about the prospects of this technology. A unique discovery is the different interactions between polariton droplets within and near the grating plane, indicating interesting possibilities for observing new synchronous behaviors and modes in quantum fluids. This work is funded by the National Science Center of the United States and the Horizon 2020 research framework of the European Union.

The field of quantum physics has taken a significant step forward, as scientists from CNR Nanotec and the University of Warsaw have made significant breakthroughs in creating long-lived quantum fluids. Their research, published in the journal Nature Physics, highlights an exciting new method of generating stable quantum fluids through semiconductor photonic gratings. These polariton droplets exhibit great stability in terms of lifespan and can be reconfigured as needed using optical operations.

The essence of this discovery lies in its ability to maintain macroscopic coherence between quantum light droplets, providing a better method for simulating interactions between synthesized atoms. This simulation of multi-body quantum phenomena has enormous potential to expand our understanding of the quantum world.

One of the main features of this technology is the generation of bound states for polaritons in a continuous medium, which helps prevent radiation loss and effectively endow these particles with negative mass. This feature ensures better stability of polaritons, allowing for continuous exploration even if regular optical pumping is required.

With the continuous growth of the industry, market forecasts indicate an increasing interest in quantum technology, including quantum computing, secure communication, and sensing applications. It is expected that the quantum technology market will significantly expand in the coming years, with the potential to achieve breakthroughs, thereby completely changing various fields such as cybersecurity, finance, drug development, and materials science.

However, the industry faces some challenges, including implementing practical and scalable quantum systems, managing decoherence, and creating sustainable economic models for quantum technology enterprises. These obstacles highlight the necessity of continuous investment in research and development.

In short, the study of quantum fluids is only one of the rapidly developing fields in the quantum industry. The significance of this study is a significant and promising advancement in quantum simulation, which can uncover new insights into complex quantum systems. This study not only represents scientific progress, but also an important step towards the practical application of quantum principles in various technologies. With the continuous development of the quantum industry, it will bring breakthrough changes that will affect the future of the technology we know.

Source: Laser Net

Related Recommendations
  • Shenzhen Guangfeng Technology may cooperate with well-known German enterprises

    Recently, Shenzhen Guangfeng Technology Co., Ltd. once again disclosed a development fixed-point notice. Unlike other fixed-point notices received this year, this fixed-point notice points to the optical components of the vehicle's dynamic color pixel lights. According to company disclosure, Guangfeng Technology recently received a development notice from a leading international brand car compan...

    2024-11-18
    See translation
  • Micro devices output powerful lasers at room temperature, reducing power consumption by 7 times

    Recently, researchers at the Rensselaer Polytechnic Institute in the United States have invented a miniature device thinner than human hair, which can help scientists explore the essence of light and matter and unravel the mysteries of the quantum field. The most important advantage of this technology is that it can work at room temperature without the need for complex infrastructure. The resea...

    2024-05-29
    See translation
  • Laser gyroscopes measure small changes in daytime length on Earth

    Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolongin...

    2023-09-19
    See translation
  • CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

    The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics ...

    2023-12-25
    See translation
  • High precision laser linkage platform to help precision processing

    With the trend of industrial intelligence and precision processing, the demand for laser precision processing in precision 3C industry, machinery and equipment, new energy vehicles and other industries has developed rapidly, making the application of laser processing technology in the industrial field more comprehensive promotion.Due to the inherent nonlinear characteristics between optics and sca...

    2023-09-11
    See translation