English

Scientists propose new methods to accelerate the commercialization of superlens technology

1097
2024-03-29 14:51:52
See translation

Superlenses are nano artificial structures that can manipulate light, providing a technique that can significantly reduce the size and thickness of traditional optical components. This technology is particularly effective in the near infrared region, and has great prospects in various applications, such as LiDAR, which is called "the eye of autonomous vehicle", mini UAV and blood vessel detector.

Despite its potential, current technology requires tens of millions of Korean won to manufacture nail sized superlenses, which poses a challenge to commercialization. Fortunately, a recent breakthrough indicates that its production costs are expected to decrease by one thousandth in price.

A collaborative research team composed of Professor Junsuk Rho from the Department of Mechanical Engineering and the Department of Chemical Engineering at Pohang University of Science and Technology has proposed two innovative methods for large-scale production of superlenses and manufacturing them on large surfaces. Their research is published in the Review of Laser and Photonics.

Lithography is a process of manufacturing a superlens by printing patterns on a silicon wafer using light. Usually, the resolution of light is inversely proportional to its wavelength, which means that shorter wavelengths lead to higher resolution, allowing for the creation of finer and more detailed structures. In this study, the team chose deep ultraviolet lithography technology, which is a process that uses shorter wavelengths of ultraviolet light.
The research team recently achieved large-scale production of visible light region superlenses using deep ultraviolet lithography technology, which was published in the journal Nature Materials. However, due to the low efficiency of existing methods in the infrared region, challenges have arisen.

To address this limitation, the team developed a material with high refractive index and low infrared region loss. This material was integrated into the established large-scale production process, resulting in the successful manufacture of a relatively large infrared superlens with a diameter of 1 centimeter on an 8-inch wafer.

It is worth noting that this lens has an excellent numerical aperture of 0.53, highlighting its excellent light gathering ability and high resolution close to the diffraction limit. The cylindrical structure further ensures excellent performance without being affected by polarization, regardless of the direction of light vibration.

In the second method, the team employed nanoimprinting, a process that allows for the use of molds to print nanostructures. This process utilizes the knowledge of nanoimprinting technology accumulated through collaborative research with RIT.

This effort has been proven successful as the team managed to mass produce a 5-millimeter diameter superlens composed of approximately 100 million rectangular nanostructures on a 4-inch wafer. It is worth noting that this type of superlens exhibits impressive performance, with an aperture of 0.53. Its rectangular structure exhibits polarization dependence and can effectively respond to the direction of light vibration.

On the basis of this achievement, the team integrated a high-resolution imaging system to observe real samples such as onion skins, verifying the possibility of commercializing superlenses.

This study is of great significance as it overcomes the limitations of traditional individual production processes for superlenses. It not only helps to create optical devices with polarization dependence and independent characteristics, tailored for specific applications, but also reduces the production cost of superlenses by up to 1000 times.
Professor Junsuk Rho said, "We have achieved precise and rapid production of wafer level high-performance superlenses, reaching the centimeter level. Our goal is to accelerate the industrialization of superlenses and promote the advancement of efficient optical devices and optical technology through this research.".

Source: Laser Net

Related Recommendations
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    See translation
  • Understanding the "single-mode" and "multi-mode" in cleaning lasers in one article

    In industrial production, cleaning is a crucial step. Traditional cleaning methods, such as mechanical cleaning and chemical cleaning, although can meet production needs to a certain extent, often have problems such as low flexibility and environmental pollution. With the advancement of technology, laser cleaning technology has emerged as a new favorite in the cleaning field due to its high effici...

    05-14
    See translation
  • Tongkuai and KDPOF launch their first 980 nm multi gigabit automotive interconnection system

    Tongkuai Optoelectronic Devices, a global leader in vertical cavity laser emitters (VCSEL) and laser diodes (PD) solutions based in Germany, and a Spanish expert in high-speed optical network solutions, KDPOF, showcased the first 980 nm multi gigabit interconnect system for automotive systems at last week's ECOC.Both companies are committed to achieving the most advanced optical data communication...

    2023-10-17
    See translation
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    See translation
  • LPKF 2024 H1 revenue up 15% year-on-year

    Recently, LPKF Laser, a leading supplier of innovative laser solutions in Germany, released its performance report for the first half of the 2024 fiscal year as of June 30, demonstrating the company's steady performance and forward-looking layout in a complex market environment. According to the financial report, LPKF Laser&Electronics SE achieved significant growth in comprehensive revenue ...

    2024-07-31
    See translation