English

Due to breakthroughs in microchip photonics, microwave signals have now become very accurate

200
2024-04-01 14:12:55
See translation

Zhao Yun/Columbia Engineering Company provided an advanced schematic of a photonic integrated chip, which aims to convert high-frequency signals into low-frequency signals using all optical frequency division.

Scientists have built a small all optical device with the lowest microwave noise ever recorded on integrated chips.


In order to improve the performance of electronic devices used for global navigation, wireless communication, radar, and precise timing, reliable microwave sources must be used as clocks and information carriers. To achieve this, it is necessary to minimize phase change noise or random fluctuations to the greatest extent possible.

David M. Rickey, Professor of Applied Physics and Materials Science and Professor of Electrical Engineering at Columbia Institute of Engineering, Alexander Gaeta, reported that a technology called optical frequency division has produced the lowest noise microwave signal in the past decade.
Optical frequency division is the latest innovation used to generate low signal strength microwaves, but its low noise level makes it unsuitable for small sensing and communication applications that require more compact microwave sources.

Gaeta announced that they have created a device that can accurately achieve optical frequency division on a chip using a single laser in a space as small as 1 mm2. This is a breakthrough that simplifies device design.
Gaeta's team focuses on quantum and nonlinear photonics, with a focus on studying the interaction between lasers and matter. The areas of interest include nonlinear nanophotonics, frequency comb generation, ultrafast pulse interactions, and the generation and processing of quantum states of light.
He and his colleagues developed and constructed an all optical on-chip device that uses a silicon nitride microresonator connected by two photons to generate a 16 GHz microwave signal, with frequency noise being the lowest recorded frequency in integrated chip platforms.

The input wave is fed into two micro resonators through a single frequency laser. One of the microresonators is used to generate an optical parametric oscillator, converting the input wave into two output waves of different frequencies. The frequency interval of the new wave is modified to adapt to the terahertz range, and the noise generated by the oscillator can be thousands of times lower than the input laser wave.

This will generate a second microresonator, transforming the optical frequency comb into one of four frequency combs with microwave spacing; Once completed, the optical pulse from the oscillator is fed into the comb generator to synchronize the microwave comb frequency with the terahertz oscillator, synchronizing the two bits and maintaining the optical frequency refractive index.

The research conducted by the Gaeta team demonstrated a simple optical frequency division method that can be carried in small, sturdy, and lightweight boxes. This breakthrough opens up the possibility of chip level technology, which can generate pure and reliable microwave signals similar to those in precision measurement laboratories.

According to his statement, the use of all-optical frequency division can improve the accuracy of microwave radar in autonomous vehicle.
The main idea of this project was proposed by graduate and postdoctoral students Gaeta, Zhao Yun, and Yoshitomo Okawachi. Zhao and Jae Jang subsequently studied these devices and conducted experiments.

This project was developed in close collaboration with Michal Lipson and his team, as well as Cornell University professors Eugene Higgins and Michal Lipson, who were also involved in the construction of photonic chips.

Source: Laser Net

Related Recommendations
  • The Science Island team has made new progress in detecting atmospheric formaldehyde

    Recently, Zhang Weijun, a research team of the Anguang Institute of the Chinese Academy of Sciences, Hefei Academy of Materials, made new progress in atmospheric formaldehyde detection, and the related achievements were published on the international TOP journal Sensors and Actors: B. Chemical under the title of "Portable highly sensitive laser absorption spectrum formaldehyde sensor based on comp...

    2023-09-21
    See translation
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    See translation
  • Amplitude's 2024 performance shows steady growth

    In 2024, Amplitude's performance will continue to maintain steady growth, thanks to our continuous innovation in femtosecond laser technology and deep market expansion The application performance of high-power femtosecond lasers in precision microfabrication and industrial manufacturing such as semiconductors is particularly impressive, "said Ruan Xia, Sales Director of Amplitude Laser Solutions D...

    02-17
    See translation
  • German research institute develops a new nanosecond laser process

    Recently, the Fraunhofer Institute (HHI) has developed a technology for processing aluminum alloy materials using reactive gas assisted nanosecond lasers, which can be used to produce electronic box samples for spacecraft manufacturing. This development project is part of the NanoBLAST project, in close collaboration with thermal engineering company Azimut Space GmbH, aimed at manufacturing surfac...

    2024-09-10
    See translation
  • Focused Energy purchases two world-class high-energy lasers

    Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average pow...

    2024-12-25
    See translation