English

New method doubles and accelerates thermal tuning of optical chips, supporting two current and voltage regulation methods

1147
2024-04-02 14:36:03
See translation

Silicon based quantum chip technology is one of the hot research directions in the field of integrated photonics. Thanks to compatibility with CMOS technology and silicon material characteristics, silicon-based integrated optical chips and devices have many advantages such as low cost, small size, low power consumption, and high integration, providing an ideal platform for large-scale optical computing, optical quantum computing, and information processing applications.

The Mach Zehnder interferometer (MZI) is a core device for high-precision programming operations in optical (quantum) computing chips. By combining and modulating the MZI and phase shifter, the key step of quantum state encoding can be completed, improving the information processing capability of optical quantum chips.

Specifically, the experimenter adjusts the phase difference of the transmitted light in the upper and lower arms of the MZI by applying different currents and voltages, thereby changing the intensity and phase of the output light, resulting in interference and achieving control of the optical path. To maximize the accuracy of chip calculations, it is necessary to accurately find the functional relationship between the phase shifter and the driving voltage and current. With the sharp increase in the number of connected MZIs on the chip, the combination of current, voltage, and phase shifter results in an exponential increase. Therefore, it is particularly important to find an efficient and feedback based current and voltage regulation method for phase shifters.

Thermal tuning test plan for MZI silicon polishing chip
The Sizhen programmable multi-channel current (voltage) source has a compact size and can achieve up to 64 channels of high-precision constant current and constant voltage output. The experimenter connected the current and voltage source to the PCB download adapter board through a shielded cable via SCSI, which can simultaneously apply appropriate voltage or current to 64 channels and adjust to obtain the desired optical signal. The loading values of each channel are initially random, and the experimenter finds the appropriate value through each iteration of the feedback function to achieve fast switching of current and voltage setting values. Among them, the maximum single channel current value of the series products can reach 100mA.

This solution supports two current and voltage regulation methods:
1. Manual adjustment: Directly input indicators through upper computer software
2. Python instruction automation control: The current and voltage source is programmed in Python to transmit control signals to the chip, then the PD value is detected and fed back to the current and voltage source through computer coding to change the control signal until the desired result is obtained.

Figure (a) shows a chip structure that can achieve any unitary transformation, and Figure (b) shows a chip structure that can achieve any two bit quantum operation, integrating a large number of MZI devices on the chip

Thermal tuning testing scheme for MZI silicon zenith computing chip

Source: Guangxing Tianxia

Related Recommendations
  • Jenoptik will invest millions of dollars to expand its optical manufacturing facilities

    A high-end manufacturing facility for semiconductor optics will be expanded at Jenoptik’s production campus in Jena, Germany. The photonics group will invest a sum in the low double-digit million euro range starting at the end of 2025.On the expanded production areas, Jenoptik will manufacture sophisticated, high-quality optical components that are mainly used in the semiconductor equipment indust...

    09-13
    See translation
  • Light Adv. Manuf. | Laser Direct Writing Assists Perovskite Optoelectronic Applications

    IntroductionMetal halide perovskites have excellent optoelectronic properties and have become the undisputed "star" materials in the semiconductor field, attracting great attention from both academia and industry. With a large amount of research investment, the application of perovskite covers various optical and optoelectronic fields such as single photon sources, micro nano lasers, photodetector...

    2024-03-25
    See translation
  • Shandong Zhancheng Intelligent Manufacturing Laser Cutting Equipment is Popular Overseas

    The high-end laser cutting machine developed and produced by Dongying Lijin Zhancheng Laser Intelligent Manufacturing Company has become popular in overseas markets this spring. This equipment can not only use laser to quickly cut steel, but also freely swing on steel, "showing" beautiful pictures. The laser travels like a paintbrush flying, and the hard steel plate has been hollowed out into be...

    03-21
    See translation
  • BAE conducts laser pipeline scanning tests at the shipyard

    BAE Systems Australia has successfully conducted experiments at the Osborne Naval Shipyard and Henderson Shipyard, using laser scanning technology to create 3D models of pipelines that will be installed on the currently under construction Hunter class frigates.A one week trial was conducted at the Zero Line Future factory in southern Adelaide and BAE Systems Australia's Henderson Shipyard, demonst...

    2023-12-13
    See translation
  • Germany Developed Short Wave Green Laser Underwater Cutting Technology

    With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plant...

    2023-09-18
    See translation