English

Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

58
2024-04-22 15:45:43
See translation

RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Photonics.

Just like camera flashes can "freeze" rapidly moving objects, making them appear stationary in photos, extremely short laser pulses can help illuminate ultrafast processes, providing scientists with a powerful method for imaging and detecting them.

For example, laser pulses of the order of attoseconds (1 attosecond=10-18 seconds) are so short that they can reveal the motion of electrons in atoms and molecules, providing a new method for discovering the evolution of chemical and biochemical reactions. Even light seems to be able to crawl on such a short time scale, passing through one nanometer takes about 3 attoseconds.

"By capturing the motion of electrons, attosecond lasers have made significant contributions to basic science," said Eiji Takahashi of RIKEN Advanced Photonics Center (RAP). "They have the potential to be applied in a wide range of fields, including observing biological cells, developing new materials, and diagnosing medical conditions."

More impactful
However, although it is possible to produce ultra short laser pulses, they lack impact force and have low energy. Creating ultra short and high-energy laser pulses will greatly expand their potential applications. Eiji Takahashi said, "The current output energy of attosecond lasers is extremely low. Therefore, increasing their output energy is crucial if they are to be used as light sources in a wide range of fields."

Just like audio amplifiers are used to enhance sound signals, laser physicists use optical amplifiers to increase the energy of laser pulses. These amplifiers typically use nonlinear crystals with special responses to light. However, if these crystals are used to amplify single cycle laser pulses, they will suffer irreparable damage. The single cycle laser pulse is very short, to the point where it ends before the light oscillates for a complete wavelength cycle.

Eiji Takahashi stated, "The biggest bottleneck in developing high-energy, ultrafast infrared laser sources is the lack of an effective method to directly amplify single cycle laser pulses. This bottleneck results in a 1 millijoule barrier of single cycle laser pulse energy."

Set a new record
However, this bottleneck has now been overcome. They have amplified the single cycle pulse to over 50 millijoules, which is more than 50 times the best result before. Due to the extremely short laser pulses generated, these energies are converted into incredible high power of several terawatts.
Takahashi said, "We have demonstrated how to overcome bottlenecks by establishing an effective method to amplify single cycle laser pulses."

Their method, called Advanced Double Chirp Optical Parametric Amplification (DC-OPA), is very simple and only involves two crystals, amplifying the complementary regions of the spectrum.

Takahashi said, "The advanced DC-OPA for amplifying single cycle laser pulses is very simple, it's just a combination of two nonlinear crystals - it feels like an idea that anyone can think of. Such a simple concept provides a new amplification technology and has made breakthroughs in the development of high-energy ultrafast lasers, which surprised me."

Importantly, advanced DC-OPA operates over a very wide wavelength range. The research team is able to amplify pulses with wavelengths that differ by more than twice. Takahashi said, "This new method has a revolutionary feature, which is that amplifying bandwidth can achieve ultra wide frequency output without affecting the output energy scaling characteristics."

New amplification technology
Their technology is a variant of another optical pulse amplification technique called "chirped pulse amplification", for which three researchers from the United States, France, and Canada won the Nobel Prize in Physics in 2018. There is an interesting connection between the awards in 2018 and 2023: Chirped pulse amplification is one of the technologies driving the development of attosecond lasers.

Takahashi predicts that their technology will further drive the development of attosecond lasers: "We have successfully developed a new laser amplification method that can increase the intensity of a single cycle laser pulse to a peak power of terawatts," he said. "Undoubtedly, this is a significant leap in the development of high-power attosecond lasers."

In the long run, his goal is to surpass attosecond lasers and create shorter pulses.

Source: OFweek Laser Network

Related Recommendations
  • Laser power supply leading enterprise Lianming Power has completed a B-round financing of tens of millions of RMB

    Shenzhen Lianming Power Supply Co., Ltd. (hereinafter referred to as "Lianming Power") announced the completion of a B-round financing of tens of millions of yuan in the near future. The fund managed by Jiangsu Jiuyu Investment Management Co., Ltd. completed the A-round investment in Lianming Power in December 2021. Recently, Jiuyu Investment, as an old shareholder, continued to increase its inves...

    2023-09-23
    See translation
  • Osram's new laser headlights "Yutianba" are unveiled

    Recently, OSRAM, a well-known global automotive lighting brand, announced the launch of its modified new laser headlights - the Yutianba laser headlights. Laser headlights were once regarded by many car companies as the "successor" of LED headlights, and German century old automotive lighting expert Osram is precisely the pioneer of laser light sources for automotive headlights. Since the 2014 BMW...

    2024-05-06
    See translation
  • Gooch&Housego successfully acquires Phoenix Optical Technologies

    Recently, renowned precision optical technology manufacturer Gooch&Housego (G&H) announced the successful acquisition of Phoenix Optical Technologies, a precision optical manufacturer located in St. Asaf, Wales, UK. The acquisition transaction amounts to £ 6.75 million, which not only consolidates G&H's market position in the aerospace and defense sectors, but also significantly expa...

    2024-11-04
    See translation
  • Progress has been made in the development of anti resonant hollow core fiber Raman probes with low background noise at Shanghai Optics and Machinery Institute

    Recently, the research team of the Special Glass and Fiber Research Center of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, aimed at the demand for in-situ detection of Raman signals, expanded the functions of the laboratory commercial Renishaw Invia confocal micro Raman spectrometer by usi...

    2024-05-22
    See translation
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    See translation