English

Intel installs the first EUV manufacturing tool that can emit lasers hotter than the sun

121
2024-04-22 16:00:17
See translation

Chip giant Intel announced that it has completed the assembly work of the world's first commercial high numerical aperture (NA) extreme ultraviolet lithography (EUV) scanner. This device greatly improves the resolution and feature scaling of next-generation chips by changing the optical design used to project printed images onto silicon wafers.

This lithography equipment weighing 150 tons has been assembled at the Intel D1X research factory in Hillsborough and is currently undergoing calibration steps. It enables chip manufacturers to engrave tiny patterns on silicon wafers, thereby manufacturing microcircuits for computer chips.
The Dutch company ASML is the only company in the world to manufacture this type of tool. Intel's model is one of only two models in the world.

The workers in Intel factories are known for their white attire, and they usually wear bunny suits from head to toe. The rabbit suit here refers to a "cleanroom set", which is a standard equipment for cleanroom workers and can prevent particles on the skin, hair, or clothing from damaging the microscopic features on computer chips.

At Intel's large research factory in Hillsboro, another accessory has recently become commonplace: a safety helmet.
The workers at Intel factory spent several months assembling a huge manufacturing tool weighing 150 metric tons. It is the most advanced lithography tool currently available, one of only two in the world, manufactured by the Dutch company ASML.

This massive device is known as the High Numerical Aperture (NA) EUV manufacturing tool. It is the size of a double decker bus in a factory, but what you see is only a part of the whole. This tool can actually extend above the ceiling and below the floor.

From there, EUV (Extreme Ultraviolet) tools emit lasers at tiny tin droplets, emitting 50000 times per second, with an energy burst 40 times hotter than the surface of the sun. The resulting collision produces a shadow of ultraviolet radiation, which does not occur naturally on Earth.

This very large production tool produces very small things: light with a wavelength of only a few billionths of a meter. These tiny light waves enable semiconductor manufacturers to imprint smaller resolutions on computer chips than ever before, paving the way for generations of more powerful computers.

"We are innovating at the forefront of physics," said Jeff Birdsall, Vice President of Intel who helped lead the company's technology development.
As is well known, Intel is very secretive about its manufacturing technology. This time it showcased its new toy in a sales event. This month, the company invited journalists - even BBC news crews - to its Hillsborough factory to promote Intel's transformation story to the public and potential customers, showcasing a manufacturing tool that its competitors have not yet possessed.

Intel's technology has deviated significantly in the past decade, partly due to the slow adoption of the first batch of EUV tools in its factories. This allows Asian competitors to stay ahead, while Intel needs to pay a high price to catch up.

Intel has now committed to investing $100 billion in building advanced factories around the world. This includes $36 billion for upgrading the Hillsboro complex factory, where Intel is developing a new generation of chip technology, known as the new process node.

The 10000 engineers and technicians at Intel's Oregon research plant are putting this money into work, and the new lithography tools are at the core of this work. The cost of each EUV machine is close to $400 million, and Intel will need many of these machines to equip its Oregon factory and other factories distributed around the world.

Intel still has a few months of work to do on the new lithography tool, testing its functionality and learning how to use it. The first batch of commercial chips using more advanced technology will not be launched for at least two years.

Intel is betting heavily on smaller circuits, betting that customers and investors will be patient when its engineers refine the next generation of technology. Intel stated that it may take two to three years to start using this machine to produce chips. They will be called "14A" chips, hailed as one of the most advanced chips in the world, and are expected to be used in fields such as artificial intelligence.

Source: OFweek Laser Network

Related Recommendations
  • The rare decay of the Higgs boson may point to physics beyond the standard model

    Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quan...

    2024-01-26
    See translation
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    See translation
  • Using laser welding technology to manufacture rotor shafts at the speed of light

    How can EMAG Laser Technology accelerate the production of critical powertrain components using its flagship product ELC 6 system?The rapid popularity of electric vehicles worldwide indicates that production planners must increase their efforts in producing key components of electric vehicles, particularly the rotor shaft. The importance of the rotor shaft as the core component for converting elec...

    2024-07-17
    See translation
  • Comparative Study of Resistance Spot Welding and Laser Spot Welding of Ultra High Strength Steel for Vehicles

    Researchers from Annamarai University in India and South Ural State University in Russia reported a comparative study of resistance spot welding and laser spot welding of ultra-high strength steel for automobiles. The related research was published in The International Journal of Lightweight Materials and Manufacturing under the title "A comparative study on resistance spot and laser beam spot wel...

    2024-09-05
    See translation
  • Han's Laser's net profit in the third quarter decreased by 45.37% year-on-year

    Recently, Han's Laser released a third quarter report, stating that the company achieved a revenue of 3.301 billion yuan in the third quarter, a year-on-year decrease of 8.96% (after adjustment); The net profit attributable to shareholders of the listed company was 209 million yuan, a year-on-year decrease of 45.37% (after adjustment).During the reporting period, the company's operating profit, to...

    2023-10-25
    See translation