English

New discoveries bring progress in photon calculation

1143
2024-04-27 14:19:49
See translation

International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way for more scalable quantum technologies.

The interference between photons is a fundamental phenomenon in quantum optics and the cornerstone of optical quantum computation. It involves using the characteristics of light (such as the wave particle duality of light) to induce interference modes, thereby achieving the encoding and processing of quantum information.

In traditional multiphoton experiments, spatial encoding is commonly used, which involves manipulating photons on different spatial paths to induce interference. These experiments require complex equipment and numerous components, making them resource intensive and difficult to scale.
In contrast, an international team composed of scientists from the University of Vienna, Politecnico di Milano, and the Free University of Brussels chose a time coding based approach. This technique manipulates the temporal rather than spatial statistics of photons.

To achieve this method, they developed an innovative architecture using fiber optic loops at the Christian Doppler Laboratory at the University of Vienna. This design can reuse the same optical components to achieve efficient multiphoton interference with minimal physical resources.

Multiphoton interference network
The first author Lorenzo Carosini explained, "In our experiment, we observed quantum interference between up to eight photons, exceeding the scale of most existing experiments. Thanks to the versatility of our method, the interference mode can be reconfigured and the experimental scale can be expanded without changing the optical device."

The research results indicate that compared with traditional spatial encoding methods, the implemented architecture has significant resource efficiency, paving the way for more easily accessible and scalable quantum technologies.

Source: Physicist Organization Network

Related Recommendations
  • Korean laser company AP Systems establishes new AVP equipment division

    Recently, AP Systems, a well-known laser manufacturer in South Korea, established a new AVP equipment division for the advanced packaging field. This business unit will focus on laser equipment required for advanced packaging processes of high bandwidth memory (HBM).AP Systems is a subsidiary of APS Group, mainly focused on the fields of display and semiconductor laser processing equipment. It foc...

    01-15
    See translation
  • The new chip opens the door to artificial intelligence computing at the speed of light

    Engineers at the University of Pennsylvania have developed a new chip that uses light waves instead of electricity to perform complex mathematical operations necessary for training artificial intelligence. This chip has the potential to fundamentally accelerate the processing speed of computers while reducing their energy consumption.The design of a silicon photonic chip was the first to combine t...

    2024-02-18
    See translation
  • Nat. Commun.: Two color orthogonal polarized organic light-emitting diode

    In recent years, linearly polarized organic light-emitting diodes have greatly enriched the application scenarios of polarization optics and optoelectronics industries. The low-cost and large-area preparation of linearly polarized organic light-emitting diodes with high polarization, strong directional emission, narrow bandwidth, and multi-color adjustability is an important challenge in the curre...

    2024-02-29
    See translation
  • GOLDEN laser die-cutting machine will be exhibited at UPAKEXPO 2024

    At the UpakExpo 2024 exhibition to be held in Moscow at the end of January, Chinese company Golden Laser will showcase for the first time two laser die-cutting machines focused on the printing, labeling, and packaging markets in Russia.The Golden Laser LC350 is a web machine designed to handle labels printed on digital and flexographic printing machines. It can cut, die cut, and kiss cut paper, pl...

    2024-01-12
    See translation
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong lasers and matter, short pulse width and high energy electrons are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite ultrafast electromagnetic radiation in a wide range of wavelengt...

    2024-06-21
    See translation