English

Significant progress has been made in the research on the detection of microwave electric fields in the Rydberg area of Shanghai Institute of Optics and Technology

1047
2024-05-08 15:36:49
See translation

Recently, the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, and the East China Research Team of the Key Laboratory of Quantum Optics, Chinese Academy of Sciences, together with the research team of Professor Chen Liqing of East China Normal University, demonstrated a Rydberg microwave sensor with high sensitivity and high instantaneous bandwidth for the first time in rubidium Rydberg atoms. The related achievements are titled "Highly sensitive microwave electronics with enhanced instantaneous bandwidth" and published in the PHYSICAL VIEW APPLED (Letter).

Rydberg atoms are highly excited atoms with a large electric dipole moment and are highly sensitive to external electromagnetic fields. Therefore, it has been proposed to use the electromagnetic induced transparency (EIT) and Autler Townes (AT) effects of Rydberg atoms to measure microwave electric fields. The detection sensitivity and instantaneous bandwidth are key indicators for Rydberg microwave detection. Previously, based on Rydberg atomic superheterodyne detection technology, high sensitivity (55 nV cm? 1 Hz? 1/2) could be achieved, but its instantaneous bandwidth was limited to several hundred kilohertz. Having both high sensitivity and large instantaneous bandwidth is a challenge in the research field of Rydberg microwave electric field detection.

Based on six wave mixing technology, the research team experimentally demonstrated a Rydberg microwave sensor that achieves both high sensitivity and high instantaneous bandwidth in a rubidium Rydberg atomic gas chamber. With an instantaneous bandwidth of up to 10.2 MHz, the maximum detection sensitivity can reach 62nVcm-1Hz-1/2. Theoretical and experimental results indicate that the enhanced high-frequency response comes from the enhancement effect of the detection light negative sideband generated by the six wave mixing process. The research results will promote the application of Rydberg microwave sensing technology in radar and communication.

The related work has been supported by projects such as the National Natural Science Foundation of China.

Figure 1 Schematic diagram of the experimental setup for the principle (a) of the Rydberg microwave sensor

(b) (c) Two six wave mixing processes that generate positive and negative sidebands

Figure 2 Sensitivity of Rydberg Microwave Sensor (a) Relationship between Superheterodyne Signal and Signal Microwave Power (b) Sensitivity Determined by System Noise

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    See translation
  • Chinese researchers enhance perovskite lasers by suppressing energy loss

    Limiting Auger recombination enables “record” quasi-continuous wave laser output.For years, engineers have sought better ways to build tiny, efficient lasers that can be integrated directly onto silicon chips, a key step toward faster, more capable optical communications and computing.Today’s commercial lasers are mostly made from III-V semiconductors grown on specialized substrates—a process that...

    08-25
    See translation
  • Hymson acquires Leister Laser's plastic welding business, further advancing its globalization strategy

    On February 27th, Hymson and Leister Group successfully signed a strategic acquisition agreement, announcing the wholly-owned acquisition of the laser plastic welding business of Leister Group.On the same day, the two parties held a grand signing ceremony in Switzerland, which was attended by Mr. Zhao Shengyu, Chairman and General Manager of Hymson, Mr. Chen Jiewei, Director and CEO of Hymson, Mr....

    03-11
    See translation
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    See translation
  • Due to breakthroughs in microchip photonics, microwave signals have now become very accurate

    Zhao Yun/Columbia Engineering Company provided an advanced schematic of a photonic integrated chip, which aims to convert high-frequency signals into low-frequency signals using all optical frequency division.Scientists have built a small all optical device with the lowest microwave noise ever recorded on integrated chips.In order to improve the performance of electronic devices used for global n...

    2024-04-01
    See translation