English

Significant progress has been made in the research on the detection of microwave electric fields in the Rydberg area of Shanghai Institute of Optics and Technology

1040
2024-05-08 15:36:49
See translation

Recently, the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, and the East China Research Team of the Key Laboratory of Quantum Optics, Chinese Academy of Sciences, together with the research team of Professor Chen Liqing of East China Normal University, demonstrated a Rydberg microwave sensor with high sensitivity and high instantaneous bandwidth for the first time in rubidium Rydberg atoms. The related achievements are titled "Highly sensitive microwave electronics with enhanced instantaneous bandwidth" and published in the PHYSICAL VIEW APPLED (Letter).

Rydberg atoms are highly excited atoms with a large electric dipole moment and are highly sensitive to external electromagnetic fields. Therefore, it has been proposed to use the electromagnetic induced transparency (EIT) and Autler Townes (AT) effects of Rydberg atoms to measure microwave electric fields. The detection sensitivity and instantaneous bandwidth are key indicators for Rydberg microwave detection. Previously, based on Rydberg atomic superheterodyne detection technology, high sensitivity (55 nV cm? 1 Hz? 1/2) could be achieved, but its instantaneous bandwidth was limited to several hundred kilohertz. Having both high sensitivity and large instantaneous bandwidth is a challenge in the research field of Rydberg microwave electric field detection.

Based on six wave mixing technology, the research team experimentally demonstrated a Rydberg microwave sensor that achieves both high sensitivity and high instantaneous bandwidth in a rubidium Rydberg atomic gas chamber. With an instantaneous bandwidth of up to 10.2 MHz, the maximum detection sensitivity can reach 62nVcm-1Hz-1/2. Theoretical and experimental results indicate that the enhanced high-frequency response comes from the enhancement effect of the detection light negative sideband generated by the six wave mixing process. The research results will promote the application of Rydberg microwave sensing technology in radar and communication.

The related work has been supported by projects such as the National Natural Science Foundation of China.

Figure 1 Schematic diagram of the experimental setup for the principle (a) of the Rydberg microwave sensor

(b) (c) Two six wave mixing processes that generate positive and negative sidebands

Figure 2 Sensitivity of Rydberg Microwave Sensor (a) Relationship between Superheterodyne Signal and Signal Microwave Power (b) Sensitivity Determined by System Noise

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    See translation
  • The research team developed additive manufacturing (AM) technology based on hydrogel injection, and related research was published on Nano Letters

    It is reported that the research team of California Institute of Technology has developed an additive manufacturing (AM) technology based on hydrogel injection, which uses two-photon lithography technology to produce 3D metal with a characteristic resolution of about 100 nm.The relevant research is published in the journal Nano Letters, titled 'Suppressed Size Effect in Nanopillars with Hierarchy ...

    2023-09-25
    See translation
  • Chinese femtosecond laser company completes Pre-A round of financing

    Recently, Qingdao Free Trade Laser Technology Co., Ltd. successfully completed the Pre-A round of financing. This financing is led by Shandong Letong Science and Technology Industry Finance New Energy Industry Development Fund Center (Limited Partnership). This financing will focus on attracting professional talents, including optical engineering experts, algorithm engineers, etc., in order to a...

    2024-11-19
    See translation
  • Microscopic Marvel photon devices have the potential to completely change the way physics and lasers are processed

    Researchers at Rensselaer Institute of Technology have developed a device that operates at room temperature, which is the first topological quantum simulator to operate under strong light matter interaction mechanisms, making high-tech research easier in cutting-edge ways.Researchers at Rensselaer Institute of Technology have developed a device no larger than human hair, which will enable physicis...

    2024-06-04
    See translation
  • Upgrading interferometric measurement technology with new guiding star lasers

    The European Southern Observatory (ESO) team has recently made significant breakthroughs in the field of interferometric measurement technology. With the help of four newly installed lasers at the Paranal Observatory in Chile, the research team has successfully created a guiding star, marking a new era in interferometric measurement technology.The successful generation of the laser guided star is ...

    11-17
    See translation