English

Significant progress has been made in the research on the detection of microwave electric fields in the Rydberg area of Shanghai Institute of Optics and Technology

1094
2024-05-08 15:36:49
See translation

Recently, the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, and the East China Research Team of the Key Laboratory of Quantum Optics, Chinese Academy of Sciences, together with the research team of Professor Chen Liqing of East China Normal University, demonstrated a Rydberg microwave sensor with high sensitivity and high instantaneous bandwidth for the first time in rubidium Rydberg atoms. The related achievements are titled "Highly sensitive microwave electronics with enhanced instantaneous bandwidth" and published in the PHYSICAL VIEW APPLED (Letter).

Rydberg atoms are highly excited atoms with a large electric dipole moment and are highly sensitive to external electromagnetic fields. Therefore, it has been proposed to use the electromagnetic induced transparency (EIT) and Autler Townes (AT) effects of Rydberg atoms to measure microwave electric fields. The detection sensitivity and instantaneous bandwidth are key indicators for Rydberg microwave detection. Previously, based on Rydberg atomic superheterodyne detection technology, high sensitivity (55 nV cm? 1 Hz? 1/2) could be achieved, but its instantaneous bandwidth was limited to several hundred kilohertz. Having both high sensitivity and large instantaneous bandwidth is a challenge in the research field of Rydberg microwave electric field detection.

Based on six wave mixing technology, the research team experimentally demonstrated a Rydberg microwave sensor that achieves both high sensitivity and high instantaneous bandwidth in a rubidium Rydberg atomic gas chamber. With an instantaneous bandwidth of up to 10.2 MHz, the maximum detection sensitivity can reach 62nVcm-1Hz-1/2. Theoretical and experimental results indicate that the enhanced high-frequency response comes from the enhancement effect of the detection light negative sideband generated by the six wave mixing process. The research results will promote the application of Rydberg microwave sensing technology in radar and communication.

The related work has been supported by projects such as the National Natural Science Foundation of China.

Figure 1 Schematic diagram of the experimental setup for the principle (a) of the Rydberg microwave sensor

(b) (c) Two six wave mixing processes that generate positive and negative sidebands

Figure 2 Sensitivity of Rydberg Microwave Sensor (a) Relationship between Superheterodyne Signal and Signal Microwave Power (b) Sensitivity Determined by System Noise

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • Research Progress in High Efficiency Supercontinuum Spectra in Specific Wavebands Made by Shanghai Optics and Machinery High Power Laser Unit Technology Laboratory

    Recently, the High Power Laser Unit Technology Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in research on high efficiency supercontinuum in specific bands. The relevant research results were published in the Journal of Lightwave Technology under the title of "Strong Anti Stokes and flat supercontinuum in specified band based on non ...

    2023-10-17
    See translation
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    See translation
  • Laser driven leap forward: the next generation of magnetic devices for controlling light is born

    Recently, a new laser heating technology developed by a Japanese research group has paved the way for advanced optical communication equipment by integrating transparent magnetic materials into optical circuits.This breakthrough was recently published in the journal Optical Materials. It is crucial for integrating magneto-optical materials and optical circuits, which has been a significant long-te...

    2023-12-21
    See translation
  • Chinese femtosecond laser company completes Pre-A round of financing

    Recently, Qingdao Free Trade Laser Technology Co., Ltd. successfully completed the Pre-A round of financing. This financing is led by Shandong Letong Science and Technology Industry Finance New Energy Industry Development Fund Center (Limited Partnership). This financing will focus on attracting professional talents, including optical engineering experts, algorithm engineers, etc., in order to a...

    2024-11-19
    See translation
  • New, low-cost, and high-efficiency photonic integrated circuits

    The rapid development of photonic integrated circuits (PICs) has combined multiple optical devices and functions on a single chip, completely changing optical communication and computing systems.For decades, silicon-based PICs have dominated the field due to their cost-effectiveness and integration with existing semiconductor manufacturing technologies, despite their limitations in electro-optic ...

    2024-05-10
    See translation