English

Scientists have developed a solar cell that can bend and soak in water

964
2024-05-08 15:48:46
See translation

Researchers and their partners at the RIEKN Creative Physical Science Research Center have created a flexible and waterproof organic photovoltaic film. This innovative thin film can integrate solar cells into clothing, maintaining functionality even in rainwater or washing cycles.

One of the potential uses of organic photovoltaic technology is to manufacture wearable electronic devices that can be attached to clothing, such as monitoring medical devices without the need for battery replacement. However, researchers have found that achieving waterproofing without the use of additional layers is very difficult, as the additional layer reduces the flexibility of the film.

Breakthroughs in Photovoltaic Technology
Now, a group of scientists publishing research results in Nature Communications can precisely achieve this. The challenge they face is overcoming a key limitation of previous equipment, which is that it is difficult to make it waterproof without reducing flexibility. Photovoltaic films typically consist of several layers. One layer is the active layer, which captures energy of a certain wavelength from sunlight and uses this energy to separate electrons and "electron holes" into cathodes and anodes. Then, electrons and holes can be reconnected through circuits to generate electrical energy. In previous devices, the layers for transmitting electron holes were usually generated sequentially through a layered approach.

But in the current work, researchers deposit the anode layer (in this case, the silver electrode) directly onto the active layer, thereby forming better adhesion between layers. They used a hot annealing process to expose the film to air at 85 degrees Celsius for 24 hours. The first author of the paper, Xiong Sixing, said, "Forming a thin film layer is very challenging, but we are pleased to have completed this task and ultimately be able to produce a thin film with a thickness of only 3 microns. We look forward to seeing the test results."

The results seen by the group from the test are very encouraging. Firstly, they completely immersed the film in water for four hours and found that its performance still had 89% of its initial performance. Then, they stretched the film 30% underwater 300 times and found that even with such punishment, the film still maintained 96% performance. In the final test, they placed the film in the washing machine for cyclic washing, and the film withstood the test, which was unprecedented before.

One of the corresponding authors of the paper, Kenjiro Fukuda, said, "What we have created is a method that can be widely used. Looking ahead, by improving the stability of the device in other aspects, such as exposure to air, strong light, and mechanical stress, we plan to further develop our ultra-thin organic solar cells to enable them to be used in truly practical wearable devices."

Source: sciechdaily

Related Recommendations
  • Researchers are studying lasers for controlling magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-02-11
    See translation
  • Lumiotive and Hokuyo announce the launch of the world's first 3D LiDAR sensor with true solid-state beam steering

    Lumotive, a pioneer in optical semiconductor technology, and Hokuyo Automatic Co., a global leader in sensors and automation, Ltd. announced today the commercial version of the YLM-10LX 3D LiDAR sensor. This breakthrough product features Lumiotive's light controlled metasurface (LCM) ™) Optical beamforming technology represents a significant leap in the application of solid-state programmable opti...

    2024-05-25
    See translation
  • Nanchang University has made progress in intelligent photoacoustic tomography imaging

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that enables precise imaging of biological tissue structures at different spatial scales. It has been widely used in various fields, including brain imaging, cancer detection, and cardiovascular disease diagnosis. However, due to limitations in data acquisition conditions, photoacoustic tomography systems typically can only...

    2024-08-13
    See translation
  • Progress in Theoretical Research on the Mechanism of Liquid Terahertz Wave Generation by Precision Measurement Institute

    Terahertz waves have significant application value in communication and imaging. The nonlinear interaction between strong field ultrafast laser and matter is one of the important ways to generate terahertz waves. The experimental and theoretical research related to terahertz generation media such as plasma, gas, and crystal is relatively sufficient. However, liquid water is a strong absorbing medi...

    2024-03-22
    See translation
  • Seyond plans to land on the Hong Kong Stock Exchange in De SPAC mode

    Recently, TechStar Acquisition Corporation (07855. HK), a special purpose acquisition company, announced that Seyond, the successor company of the special purpose acquisition transaction, has submitted a new listing application. Seyond plans to land on the Hong Kong Stock Exchange under the De SPAC model. This means that Seyond is only one step away from going public through a backdoor listing. If...

    02-14
    See translation