English

More evidence of cosmic gravitational wave background: Laser interferometer gravitational wave observatory composed of two detectors

1100
2024-05-21 14:14:51
See translation

The gravitational wave background was first detected in 2016. This was announced after the release of the first dataset by the European pulsar timing array. The second set of data has just been released, combined with the timed array of Indian pulsars, and both studies have confirmed the existence of the background. The latest theory seems to suggest that we are seeing a comprehensive signal of the merger of supermassive black holes.

Gravitational waves are spatiotemporal ripples caused by violent processes in the universe. As part of general relativity, Einstein predicted them as early as 1916. People believe that these waves are generated by accelerating masses such as black hole mergers and neutron star collisions. They are expected to travel through space without any obstacles. Their existence was first detected by the Laser Interferometer Gravity Wave Observatory (LIGO) in September 2015. They are believed to originate from the gravitational merger between two black holes located 1.3 billion light-years away.

The Laser Interferometer Gravity Wave Observatory consists of two detectors, one located in Livingston, Louisiana and the other near Hanford, Washington. The detector uses an L-shaped giant arm to measure tiny ripples in the fabric. Universe. 

The background of gravitational waves is a random distribution of gravitational waves that permeate the universe, as detected by the European pulsar timing array. For example, the background is believed to be generated by multiple superimposed gravitational waves generated by supermassive black hole binary stars. Observing the gravitational wave background can provide us with a great opportunity to study the entire universe, just like cosmic background radiation. If it were not for the European pulsar timing array, the Indian PTA, the North American Nahertz Observatory, and the Parks PTA, this achievement would not have been possible.

The Pulsar Timing Array (PTA) consists of a galactic pulsar network, which is monitored and analyzed to detect patterns in the arrival time of its pulses to Earth. Essentially, the function of PTA is equivalent to that of a galaxy sized detector. Although pulsar timing arrays have various applications, the most well-known one is the use of millisecond pulsar arrays to detect and analyze long wavelength gravitational wave backgrounds.

This paper was written by a team led by J. Antoniadis from the Greek Institute of Astrophysics, exploring the meanings of common low-frequency signals observed in the latest data released in the pulsar timing array system. The team collected data from four different datasets and searched for signals containing only high-quality data.

The conclusion is clear and accurate, and there is more evidence to support the existence of gravity wave background. With the passage of time and the increase of pulsar timing array projects, the low-frequency gravity wave background will become increasingly unique. The current task is to explain the details of all these signals in order to maximize the opportunity to explore the universe in this new way.

Source: Laser Net

Related Recommendations
  • Application of laser technology in electric vehicles to improve safety and reduce rusting

    Trumpf has developed a laser application to improve the safety of electric vehicles, which can be used for adhesive and coating preparation in battery production, as well as anti-corrosion of aluminum components. This not only enhances safety but also prevents rusting of the vehicle.“Selective surface processing with lasers is a clean and fast alternative to chemical processes in the automotive in...

    10-13
    See translation
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-03-19
    See translation
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    See translation
  • Shanghai Optical Machinery Institute has made progress in laser assisted connection of metal carbon fiber composite heterojunction materials

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in the laser assisted connection of metal carbon fiber composite heterostructure joints.The team used an adjustable flat top rectangular semiconductor laser as a heat source to achieve...

    2023-09-01
    See translation
  • Lumentum Holdings changes CEO

    On February 3, 2025, Lumentum Holdings has appointed Michael Hurlston as its President, CEO, and Director, effective from February 7. Hurlston replaces Alan Lowe, who has been serving as the company's President and CEO since 2015. Lowe will continue to serve as a member of Lumentum's board of directors and as a consultant to the company.Lumentum is a major supplier of high-speed optical transceive...

    02-06
    See translation