English

More evidence of cosmic gravitational wave background: Laser interferometer gravitational wave observatory composed of two detectors

1045
2024-05-21 14:14:51
See translation

The gravitational wave background was first detected in 2016. This was announced after the release of the first dataset by the European pulsar timing array. The second set of data has just been released, combined with the timed array of Indian pulsars, and both studies have confirmed the existence of the background. The latest theory seems to suggest that we are seeing a comprehensive signal of the merger of supermassive black holes.

Gravitational waves are spatiotemporal ripples caused by violent processes in the universe. As part of general relativity, Einstein predicted them as early as 1916. People believe that these waves are generated by accelerating masses such as black hole mergers and neutron star collisions. They are expected to travel through space without any obstacles. Their existence was first detected by the Laser Interferometer Gravity Wave Observatory (LIGO) in September 2015. They are believed to originate from the gravitational merger between two black holes located 1.3 billion light-years away.

The Laser Interferometer Gravity Wave Observatory consists of two detectors, one located in Livingston, Louisiana and the other near Hanford, Washington. The detector uses an L-shaped giant arm to measure tiny ripples in the fabric. Universe. 

The background of gravitational waves is a random distribution of gravitational waves that permeate the universe, as detected by the European pulsar timing array. For example, the background is believed to be generated by multiple superimposed gravitational waves generated by supermassive black hole binary stars. Observing the gravitational wave background can provide us with a great opportunity to study the entire universe, just like cosmic background radiation. If it were not for the European pulsar timing array, the Indian PTA, the North American Nahertz Observatory, and the Parks PTA, this achievement would not have been possible.

The Pulsar Timing Array (PTA) consists of a galactic pulsar network, which is monitored and analyzed to detect patterns in the arrival time of its pulses to Earth. Essentially, the function of PTA is equivalent to that of a galaxy sized detector. Although pulsar timing arrays have various applications, the most well-known one is the use of millisecond pulsar arrays to detect and analyze long wavelength gravitational wave backgrounds.

This paper was written by a team led by J. Antoniadis from the Greek Institute of Astrophysics, exploring the meanings of common low-frequency signals observed in the latest data released in the pulsar timing array system. The team collected data from four different datasets and searched for signals containing only high-quality data.

The conclusion is clear and accurate, and there is more evidence to support the existence of gravity wave background. With the passage of time and the increase of pulsar timing array projects, the low-frequency gravity wave background will become increasingly unique. The current task is to explain the details of all these signals in order to maximize the opportunity to explore the universe in this new way.

Source: Laser Net

Related Recommendations
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    See translation
  • Snapmaker introduces new 20W and 40W laser modules

    Snapmaker has opened pre-orders for 20W and 40W laser modules, which are significant upgrades to the modules available on existing Snapmaker machines.Snapmaker says that with the 40W module installed, you will be able to cut 15 mm basswood plywood at a time at a speed of 20 mm/SEC. With 20W, you will cut 10mm at a rate of 10mm/SEC. That's a lot more than Artisan and Snapmaker 2.0 - both are comp...

    2023-08-04
    See translation
  • Tsinghua University develops efficient and stable perovskite quantum dot deep red light devices

    Semiconductor quantum dots have the advantages of high quantum yield, narrow emission spectrum, and compatibility with solution processes. They have shown broad application prospects and enormous economic value in the field of optoelectronic materials and devices, and related research has won the Nobel Prize in Chemistry in 2023.Compared with traditional II-VI and III-V quantum dots (such as CdSe,...

    03-18
    See translation
  • Researchers have made breakthrough discoveries in the field of nanophotonics

    Researchers have made breakthrough discoveries in the field of nanophotonics. They have successfully developed a locked mode ultrafast laser using lithium niobium, a material known for its excellent optical properties. This breakthrough opens up new possibilities for revolutionary applications, including telecommunications, data storage, and ultra fast imaging.A mode-locked laser is a type of lase...

    2023-11-20
    See translation
  • American scientists use light technology to control hypersonic jet engines

    According to the website "interesting engineering" on July 29th, a new study funded by the National Aeronautics and Space Administration (NASA) has revealed for the first time that the airflow in supersonic combustion jet engines can be controlled through optical sensors. This study was conducted by researchers from the School of Engineering and Applied Sciences at the University of Virginia.When ...

    2024-07-31
    See translation