English

More evidence of cosmic gravitational wave background: Laser interferometer gravitational wave observatory composed of two detectors

1064
2024-05-21 14:14:51
See translation

The gravitational wave background was first detected in 2016. This was announced after the release of the first dataset by the European pulsar timing array. The second set of data has just been released, combined with the timed array of Indian pulsars, and both studies have confirmed the existence of the background. The latest theory seems to suggest that we are seeing a comprehensive signal of the merger of supermassive black holes.

Gravitational waves are spatiotemporal ripples caused by violent processes in the universe. As part of general relativity, Einstein predicted them as early as 1916. People believe that these waves are generated by accelerating masses such as black hole mergers and neutron star collisions. They are expected to travel through space without any obstacles. Their existence was first detected by the Laser Interferometer Gravity Wave Observatory (LIGO) in September 2015. They are believed to originate from the gravitational merger between two black holes located 1.3 billion light-years away.

The Laser Interferometer Gravity Wave Observatory consists of two detectors, one located in Livingston, Louisiana and the other near Hanford, Washington. The detector uses an L-shaped giant arm to measure tiny ripples in the fabric. Universe. 

The background of gravitational waves is a random distribution of gravitational waves that permeate the universe, as detected by the European pulsar timing array. For example, the background is believed to be generated by multiple superimposed gravitational waves generated by supermassive black hole binary stars. Observing the gravitational wave background can provide us with a great opportunity to study the entire universe, just like cosmic background radiation. If it were not for the European pulsar timing array, the Indian PTA, the North American Nahertz Observatory, and the Parks PTA, this achievement would not have been possible.

The Pulsar Timing Array (PTA) consists of a galactic pulsar network, which is monitored and analyzed to detect patterns in the arrival time of its pulses to Earth. Essentially, the function of PTA is equivalent to that of a galaxy sized detector. Although pulsar timing arrays have various applications, the most well-known one is the use of millisecond pulsar arrays to detect and analyze long wavelength gravitational wave backgrounds.

This paper was written by a team led by J. Antoniadis from the Greek Institute of Astrophysics, exploring the meanings of common low-frequency signals observed in the latest data released in the pulsar timing array system. The team collected data from four different datasets and searched for signals containing only high-quality data.

The conclusion is clear and accurate, and there is more evidence to support the existence of gravity wave background. With the passage of time and the increase of pulsar timing array projects, the low-frequency gravity wave background will become increasingly unique. The current task is to explain the details of all these signals in order to maximize the opportunity to explore the universe in this new way.

Source: Laser Net

Related Recommendations
  • Researchers have demonstrated a breakthrough boson sampling method using ultracold atoms in optical lattices

    JILA researcher, National Institute of Standards and Technology (NIST) physicist, physics professor Adam Kaufman and his team at the University of Colorado Boulder, as well as NIST collaborators, demonstrated a new method of cross laser beam lattice sampling using ultracold atoms for boson sampling in two-dimensional optics. This study, recently published in the journal Nature, marks a significant...

    2024-05-10
    See translation
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    See translation
  • The global laser technology market is expected to reach 29.5 billion US dollars by 2029

    Recently, Markets And Markets released a five-year assessment report on the global laser industry. According to the report, the global laser technology market is expected to reach $20 billion by 2024 and is projected to reach $29.5 billion by 2029, with a compound annual growth rate of 8.0% during the forecast period.Global Laser Technology Market ForecastThe reasons for market growth include: the...

    2024-07-25
    See translation
  • Laser Photonics Corporation acquires Control Micro Systems through asset purchase agreement

    Recently, Laser Photonics Corporation (LPC), a laser cleaning equipment developer listed on NASDAQ in the United States, announced that the company has signed a final agreement to acquire Control Micro Systems, Inc. (CMS) through an Asset Purchase Agreement (APA), but the financial details of the transaction have not yet been disclosed.At present, LPC's market value has shrunk by 70%, and it is de...

    2024-11-05
    See translation
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    See translation