English

More evidence of cosmic gravitational wave background: Laser interferometer gravitational wave observatory composed of two detectors

1068
2024-05-21 14:14:51
See translation

The gravitational wave background was first detected in 2016. This was announced after the release of the first dataset by the European pulsar timing array. The second set of data has just been released, combined with the timed array of Indian pulsars, and both studies have confirmed the existence of the background. The latest theory seems to suggest that we are seeing a comprehensive signal of the merger of supermassive black holes.

Gravitational waves are spatiotemporal ripples caused by violent processes in the universe. As part of general relativity, Einstein predicted them as early as 1916. People believe that these waves are generated by accelerating masses such as black hole mergers and neutron star collisions. They are expected to travel through space without any obstacles. Their existence was first detected by the Laser Interferometer Gravity Wave Observatory (LIGO) in September 2015. They are believed to originate from the gravitational merger between two black holes located 1.3 billion light-years away.

The Laser Interferometer Gravity Wave Observatory consists of two detectors, one located in Livingston, Louisiana and the other near Hanford, Washington. The detector uses an L-shaped giant arm to measure tiny ripples in the fabric. Universe. 

The background of gravitational waves is a random distribution of gravitational waves that permeate the universe, as detected by the European pulsar timing array. For example, the background is believed to be generated by multiple superimposed gravitational waves generated by supermassive black hole binary stars. Observing the gravitational wave background can provide us with a great opportunity to study the entire universe, just like cosmic background radiation. If it were not for the European pulsar timing array, the Indian PTA, the North American Nahertz Observatory, and the Parks PTA, this achievement would not have been possible.

The Pulsar Timing Array (PTA) consists of a galactic pulsar network, which is monitored and analyzed to detect patterns in the arrival time of its pulses to Earth. Essentially, the function of PTA is equivalent to that of a galaxy sized detector. Although pulsar timing arrays have various applications, the most well-known one is the use of millisecond pulsar arrays to detect and analyze long wavelength gravitational wave backgrounds.

This paper was written by a team led by J. Antoniadis from the Greek Institute of Astrophysics, exploring the meanings of common low-frequency signals observed in the latest data released in the pulsar timing array system. The team collected data from four different datasets and searched for signals containing only high-quality data.

The conclusion is clear and accurate, and there is more evidence to support the existence of gravity wave background. With the passage of time and the increase of pulsar timing array projects, the low-frequency gravity wave background will become increasingly unique. The current task is to explain the details of all these signals in order to maximize the opportunity to explore the universe in this new way.

Source: Laser Net

Related Recommendations
  • The most advanced gas sensing laser technology will be exhibited at the upcoming CEM 2023 exhibition in Barcelona

    Nanoplus Nanosystems and Technologies GmbH is an ISO 9001:14001 certified supplier and one of the world's most famous laser manufacturers for gas sensing applications. The cornerstone of nanoplus's success is its unique patented method of manufacturing DFB laser sources. Nanoplus celebrates its 25th anniversary this year and separated from the University of Vilzburg in 1998.Among the outstanding i...

    2023-09-14
    See translation
  • Using Topological Photon Chips to Uncover the Secrets of Open Systems

    Conservation of energy is a fundamental concept in physics that can be used to explain anything from planetary orbits to the internal workings of individual atoms.Energy can be converted into other forms, but the overall energy level is usually considered to vary over time. Therefore, when attempting to describe a system, physicists usually pay attention to ensuring that it is isolated from the su...

    2024-02-02
    See translation
  • Laser Photonics Corporation sets high growth strategy for 2025

    Recently, laser cleaning equipment manufacturer Laser Photonics Corporation (LPC) announced its ambitious 2025 growth strategy, emphasizing innovation, strategic investment, and market expansion. LPC Executive Vice President John Armstrong stated:With a solid foundation laid in 2024, we will enter 2025 with clear momentum and a firm focus on growth. The progress we made last year - strengthening...

    01-20
    See translation
  • Opton Laser commercializes ultra-high contrast third-order autocorrelators

    Recently, Opton Laser International, a supplier specializing in photonics, is currently distributing manufacturer UltraFast Innovations (UFI)'s ultra-high contrast third-order autocorrelator Tundra++. The new generation Tundra aims to characterize the temporal intensity distribution and quality of laser pulses with particularly high sensitivity.This is to avoid the harmful effects caused by the hi...

    2023-08-31
    See translation
  • HieFo launches high-power DFB laser chip to enter coherent optical transmission market

    Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission. This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringin...

    2024-09-13
    See translation