English

NASA will demonstrate laser communications from the space station

105
2023-09-02 14:36:58
See translation

NASA's ILLUMA-T payload communicates with the LCRD via laser signals.

NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to astronauts conducting experiments, including improving NASA's space communications capabilities.

In 2023, NASA will send a technology demonstration called the Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T) to the space station. ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together complete NASA's first two-way end-to-end laser relay system.

With ILLUMA-T, NASA's Space Communications and Navigation (SCaN) Program Office will demonstrate the power of laser communications on the space station. Laser communication systems use invisible infrared light to send and receive information at higher data rates. With higher data rates, missions can send more images and videos back to Earth in a single transmission. Once installed on the space station, ILLUMA-T will demonstrate the benefits of higher data rates for low-Earth orbit missions.

"Laser communications provide missions with greater flexibility and a fast way to get data from space," said Badri Younes, former deputy deputy administrator for the NASASCaN program. "We are integrating this technology into demonstrations near the Earth, on the moon and in deep space."

In addition to higher data rates, laser systems are lighter and consume less power, a key advantage when designing spacecraft. ILLUMA-T, which is about the size of a standard refrigerator, will be attached to the station's external module for demonstration with the LCRD.

Currently, LCRD is demonstrating the benefits of laser relay in geosynchronous orbit, 22,000 miles above Earth, by transmitting data between two ground stations and conducting experiments to further refine NASA's laser capabilities.

"Once ILLUMA-T is aboard the space station, the terminal will send high-resolution data, including pictures and video, to the LCRD at a rate of 1.2 gigabits per second," said Matt Magsamen, ILLUMA-T deputy program manager. "The data will then be sent from LCRD to ground stations in Hawaii and California. The demonstration will show how laser communications can benefit low-Earth orbit missions.

NASA's Laser Communication Roadmap: Demonstrating laser communication capabilities across multiple missions in a variety of space conditions. Source: NASA/Dave Ryan

ILLUMA-T was launched as a payload on SpaceX's 29th commercial resupply services mission for NASA. For the first two weeks after launch, ILLUMA-T will be removed from the trunk of the Dragon spacecraft and installed on the station's Japan Experimental Module Exposure Facility (JEM-EF), also known as "Kibo" - which means "hope" in Japanese.

After the payload is installed, the ILLUMA-T team will conduct initial testing and on-orbit inspections. Once completed, the team will pass the payload's first light - a key milestone as the mission transmits its first laser beam to LCRD through its optical telescope.

Once the first light is reached, data transmission and laser communication experiments will begin and continue throughout the planned mission period.

Test lasers in different scenarios

In the future, operational laser communications will complement radio frequency systems, which are used by most space-based missions today to send data home. ILLUMA-T is not the first mission to test laser communications in space, but brings NASA closer to an operational injection of the technology.

In addition to LCRD, ILLUMA-T's predecessors include the 2022 TeraByte Infrared Transmission system, which is currently testing laser communications on small Cubesats in low Earth orbit; Lunar laser communication demonstration to send data to and from lunar orbit and Earth during the Lunar Atmosphere and Dust Environment Explorer mission in 2014; As well as the 2017 Optical payload for Laser Communication Science, the model demonstrates how laser communication speeds up the flow of information between Earth and space compared to radio signals.

Testing the ability of laser communications to generate higher data rates in a variety of scenarios will help the aerospace community further refine the capabilities of future missions to the moon, Mars and deep space.

Source: Thepaper.cn

Related Recommendations
  • Measurement of Fine Structure and Spin Interaction of Quantum Materials through TriVista High Resolution Spectral Measurement System

    backgroundThe Jörg Debus team from the Technical University of Dortmund in Germany is dedicated to researching optical quantum information processing and quantum sensing in materials with potential applications. The team mainly studies the fine structure of materials under light fields, such as quantum dots, quantum effects of two-dimensional materials, semiconductor defects in diamonds, and ...

    2024-03-11
    See translation
  • Renishao provides customized laser ruler solutions for ASML

    Renishao collaborated with ASML to meet a range of strict manufacturing and performance requirements and developed a differential interferometer system for providing direct position feedback in metrology applications. Customized encoder solutions can achieve step wise improvements in speed and throughput.Modern semiconductor technology relies on precise control of various processes used in integra...

    2023-12-14
    See translation
  • Zeiss, a century old optical giant, has established the Optoelectronic Optics Division

    Recently, Carl Zeiss announced on its official website that it plans to launch a new strategic business unit, ZEISS Photonics&Optics, on October 1, 2024, with the aim of providing excellent optoelectronic and optical products and solutions to global customers. It is reported that starting from the 2024/25 fiscal year, Zeiss Group will establish a new business unit focused on optoelectronics...

    2024-05-28
    See translation
  • Micro devices output powerful lasers at room temperature, reducing power consumption by 7 times

    Recently, researchers at the Rensselaer Polytechnic Institute in the United States have invented a miniature device thinner than human hair, which can help scientists explore the essence of light and matter and unravel the mysteries of the quantum field. The most important advantage of this technology is that it can work at room temperature without the need for complex infrastructure. The resea...

    2024-05-29
    See translation
  • Scientists have used 3D integration technology to bring ultra-low noise lasers without isolators to silicon photonics

    After electronic integrated circuits (Eics), silicon (Si) photonics technology is expected to achieve photonic integrated circuits (PIC) with high density, advanced functions and portability. Although various silicon photonics fountifiers are rapidly developing PIC capabilities to enable mass production of modulators, photodetectors and, more recently, lasers, silicon PIC has not yet met the strin...

    2023-08-04
    See translation