English

NASA will demonstrate laser communications from the space station

86
2023-09-02 14:36:58
See translation

NASA's ILLUMA-T payload communicates with the LCRD via laser signals.

NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to astronauts conducting experiments, including improving NASA's space communications capabilities.

In 2023, NASA will send a technology demonstration called the Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T) to the space station. ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together complete NASA's first two-way end-to-end laser relay system.

With ILLUMA-T, NASA's Space Communications and Navigation (SCaN) Program Office will demonstrate the power of laser communications on the space station. Laser communication systems use invisible infrared light to send and receive information at higher data rates. With higher data rates, missions can send more images and videos back to Earth in a single transmission. Once installed on the space station, ILLUMA-T will demonstrate the benefits of higher data rates for low-Earth orbit missions.

"Laser communications provide missions with greater flexibility and a fast way to get data from space," said Badri Younes, former deputy deputy administrator for the NASASCaN program. "We are integrating this technology into demonstrations near the Earth, on the moon and in deep space."

In addition to higher data rates, laser systems are lighter and consume less power, a key advantage when designing spacecraft. ILLUMA-T, which is about the size of a standard refrigerator, will be attached to the station's external module for demonstration with the LCRD.

Currently, LCRD is demonstrating the benefits of laser relay in geosynchronous orbit, 22,000 miles above Earth, by transmitting data between two ground stations and conducting experiments to further refine NASA's laser capabilities.

"Once ILLUMA-T is aboard the space station, the terminal will send high-resolution data, including pictures and video, to the LCRD at a rate of 1.2 gigabits per second," said Matt Magsamen, ILLUMA-T deputy program manager. "The data will then be sent from LCRD to ground stations in Hawaii and California. The demonstration will show how laser communications can benefit low-Earth orbit missions.

NASA's Laser Communication Roadmap: Demonstrating laser communication capabilities across multiple missions in a variety of space conditions. Source: NASA/Dave Ryan

ILLUMA-T was launched as a payload on SpaceX's 29th commercial resupply services mission for NASA. For the first two weeks after launch, ILLUMA-T will be removed from the trunk of the Dragon spacecraft and installed on the station's Japan Experimental Module Exposure Facility (JEM-EF), also known as "Kibo" - which means "hope" in Japanese.

After the payload is installed, the ILLUMA-T team will conduct initial testing and on-orbit inspections. Once completed, the team will pass the payload's first light - a key milestone as the mission transmits its first laser beam to LCRD through its optical telescope.

Once the first light is reached, data transmission and laser communication experiments will begin and continue throughout the planned mission period.

Test lasers in different scenarios

In the future, operational laser communications will complement radio frequency systems, which are used by most space-based missions today to send data home. ILLUMA-T is not the first mission to test laser communications in space, but brings NASA closer to an operational injection of the technology.

In addition to LCRD, ILLUMA-T's predecessors include the 2022 TeraByte Infrared Transmission system, which is currently testing laser communications on small Cubesats in low Earth orbit; Lunar laser communication demonstration to send data to and from lunar orbit and Earth during the Lunar Atmosphere and Dust Environment Explorer mission in 2014; As well as the 2017 Optical payload for Laser Communication Science, the model demonstrates how laser communication speeds up the flow of information between Earth and space compared to radio signals.

Testing the ability of laser communications to generate higher data rates in a variety of scenarios will help the aerospace community further refine the capabilities of future missions to the moon, Mars and deep space.

Source: Thepaper.cn

Related Recommendations
  • Gas reduction technology of fiber laser helps to improve the cutting quality of low-carbon steel

    The Mitsubishi GX-F Advanced series of artificial intelligence enabled fiber lasers now use patented gas and burr reduction technology to help improve cutting quality while reducing gas consumption when cutting low-carbon steel.Mitsubishi Laser's proprietary Agr Mix nozzle technology does not require an external mixing tank or high-pressure oxygen. The combination of low-pressure air and nitrogen ...

    2024-02-14
    See translation
  • The semiconductor laser market is expected to reach $5.3 billion by 2029

    Nowadays, laser technology is widely used in various traditional and emerging fields, including optical communication, material processing, consumer equipment, automotive sensing and lighting, display technology, medical applications for treatment and diagnosis, as well as aerospace and defense.Especially in the semiconductor laser market, it is expected to grow from $3.1 billion in 2023 to $5.2 b...

    2024-12-03
    See translation
  • Chuangxin Laser Industry Dedicated Laser and Solutions Help Promote the Intelligent Development of Cladding Application Industry

    Laser cladding technology, also known as laser additive manufacturing technology, uses high-energy laser as the heat source and metal alloy powder as the cladding material. Through the synchronous action of laser and alloy powder on the metal surface, it quickly melts to form a molten pool, and rapidly solidifies to form a dense, uniform, and controllable thickness metallurgical bonding layer, the...

    2023-11-01
    See translation
  • Researchers have developed a new type of frequency comb that is expected to further improve the accuracy of timing

    The chip based device, known as the frequency comb, measures the frequency of light waves with unparalleled accuracy, completely changing timing, detection of exoplanets, and high-speed optical communication.Now, scientists and collaborators from the National Institute of Standards and Technology in the United States have developed a new method for manufacturing combs, which is expected to improve...

    2024-03-15
    See translation
  • Researchers use machine learning to optimize high-power laser experiments

    High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting syst...

    2024-05-24
    See translation