English

NASA will demonstrate laser communications from the space station

415
2023-09-02 14:36:58
See translation

NASA's ILLUMA-T payload communicates with the LCRD via laser signals.

NASA uses the International Space Station, a spacecraft the size of a football field orbiting the Earth, to learn more about living and working in space. For more than 20 years, the space station has provided a unique platform for investigation and research in the fields of biology, technology, agriculture and more. It is home to astronauts conducting experiments, including improving NASA's space communications capabilities.

In 2023, NASA will send a technology demonstration called the Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T) to the space station. ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together complete NASA's first two-way end-to-end laser relay system.

With ILLUMA-T, NASA's Space Communications and Navigation (SCaN) Program Office will demonstrate the power of laser communications on the space station. Laser communication systems use invisible infrared light to send and receive information at higher data rates. With higher data rates, missions can send more images and videos back to Earth in a single transmission. Once installed on the space station, ILLUMA-T will demonstrate the benefits of higher data rates for low-Earth orbit missions.

"Laser communications provide missions with greater flexibility and a fast way to get data from space," said Badri Younes, former deputy deputy administrator for the NASASCaN program. "We are integrating this technology into demonstrations near the Earth, on the moon and in deep space."

In addition to higher data rates, laser systems are lighter and consume less power, a key advantage when designing spacecraft. ILLUMA-T, which is about the size of a standard refrigerator, will be attached to the station's external module for demonstration with the LCRD.

Currently, LCRD is demonstrating the benefits of laser relay in geosynchronous orbit, 22,000 miles above Earth, by transmitting data between two ground stations and conducting experiments to further refine NASA's laser capabilities.

"Once ILLUMA-T is aboard the space station, the terminal will send high-resolution data, including pictures and video, to the LCRD at a rate of 1.2 gigabits per second," said Matt Magsamen, ILLUMA-T deputy program manager. "The data will then be sent from LCRD to ground stations in Hawaii and California. The demonstration will show how laser communications can benefit low-Earth orbit missions.

NASA's Laser Communication Roadmap: Demonstrating laser communication capabilities across multiple missions in a variety of space conditions. Source: NASA/Dave Ryan

ILLUMA-T was launched as a payload on SpaceX's 29th commercial resupply services mission for NASA. For the first two weeks after launch, ILLUMA-T will be removed from the trunk of the Dragon spacecraft and installed on the station's Japan Experimental Module Exposure Facility (JEM-EF), also known as "Kibo" - which means "hope" in Japanese.

After the payload is installed, the ILLUMA-T team will conduct initial testing and on-orbit inspections. Once completed, the team will pass the payload's first light - a key milestone as the mission transmits its first laser beam to LCRD through its optical telescope.

Once the first light is reached, data transmission and laser communication experiments will begin and continue throughout the planned mission period.

Test lasers in different scenarios

In the future, operational laser communications will complement radio frequency systems, which are used by most space-based missions today to send data home. ILLUMA-T is not the first mission to test laser communications in space, but brings NASA closer to an operational injection of the technology.

In addition to LCRD, ILLUMA-T's predecessors include the 2022 TeraByte Infrared Transmission system, which is currently testing laser communications on small Cubesats in low Earth orbit; Lunar laser communication demonstration to send data to and from lunar orbit and Earth during the Lunar Atmosphere and Dust Environment Explorer mission in 2014; As well as the 2017 Optical payload for Laser Communication Science, the model demonstrates how laser communication speeds up the flow of information between Earth and space compared to radio signals.

Testing the ability of laser communications to generate higher data rates in a variety of scenarios will help the aerospace community further refine the capabilities of future missions to the moon, Mars and deep space.

Source: Thepaper.cn

Related Recommendations
  • This semiconductor integrator launches laser chip and array technology

    Recently, Sivers Semiconductors, a well-known chip and integration module supplier in Sweden, announced that its subsidiary Sivers Photonics is partnering with ecosystem partners to showcase its advanced laser chip and array technology at the OFC conference in Santiago.The first on-site demonstration used Ayar Labs optical I/O and CW-WDM MSA compatible SuperNova ™ The light source is powered...

    2024-03-29
    See translation
  • Aalyria plans to establish a laser link mesh network to quickly transmit data on land, in the air, in the ocean, and in space

    Aalyria is establishing a laser link mesh network to quickly transmit data on land, in the air, in the ocean, and in space. The maritime part of the plan is about to be pushed forward.Recently, this DC based laser communication network company announced the signing of a memorandum of understanding with HICO Investment Group, which focuses on investing in shipping and logistics companies. According...

    2023-10-26
    See translation
  • Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

    Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.Researchers at the University of L...

    2023-11-20
    See translation
  • Advancing Astronomy: Using Laser Guided Star Adaptive Optics to Obtain clearer celestial views

    Adaptive optics is defined as an advanced optical system used to correct the transmission medium between the subject and the image, providing users with clearer images. Adaptive optics helps to use a complex combination of deformable mirrors to correct images in real-time through distortion in the Earth's atmosphere. These images are of greater importance in many vertical industries such as health...

    2024-02-22
    See translation
  • The estimated output value of the LiDAR market in 2029 is expected to reach 5.352 billion US dollars

    Market research firm TrendForce Consulting released an industry insight report today, stating that currently LiDAR is mainly used in the automotive market for passenger cars and unmanned taxis, while in the industrial market it supports applications such as robotics, factory automation, and logistics.The report points out that driven by Level 3 and more advanced auto drive system system and logist...

    01-22
    See translation