English

Ruisheng Clyde Aerospace Company Commercializes TNO's Satellite Communication Laser Terminal

1076
2024-05-24 14:09:09
See translation

AAC Clyde Space, a small satellite technology multinational company headquartered in Uppsala, Sweden, has obtained the right to manufacture and distribute laser satellite communication terminals using the optical technology of the Dutch research institution TNO.

TNO's technology helps to transmit satellite generated data to Earth through lasers, with the potential to achieve high speed and security in broadband connections, surpassing traditional radio frequency communication methods.

In addition, the Dutch company FSO Instruments is a supplier of terminal core optical components, which also originate from TNO's research. This arrangement may help establish an international supply chain for laser satellite communication terminals.

TNO Space Director Kees Buyjsrogge commented, "This new collaboration highlights our commitment to accelerating technology transfer, promoting the growth of Dutch optical satellite communication capabilities, and strengthening strong networks within Europe and NATO.".

The new agreement grants Raytheon Clyde Aerospace the right to use TNO laser communication terminal technology for 20 years. These terminal sizes are 10 x 10 x 10 centimeters, suitable for small satellites that AAC Clyde Space excels at. Their goal is to manufacture a commercially viable laser communication terminal for small satellites that can be mass-produced.

In order to fully develop AAC terminals, Clyde Space requires additional optical technology, FSO instruments will provide these technologies. FSO Instruments has recently signed a similar licensing agreement to leverage TNO's technology and expertise in optical heads, optical workbenches, and coarse pointing alignment systems.

By cross licensing TNO's optical technology, it has established a supply chain for producing small satellite communication terminals, which is pioneering in the Netherlands.

Operation mode
Laser satellite communication provides links between ground stations, satellites, aircraft, and drones. Using the infrared band, laser communication can achieve data transmission speeds that are 100 to 1000 times faster than radio frequencies currently used for communication. In addition, laser communication links are considered safer because they use very narrow optical laser beams instead of wide radio signals.

Luis Gomes, CEO of Raytheon Clyde Aerospace, said, "The advancement of high data volume payloads (such as Earth observation payloads for cube satellites and small satellites) highlights the necessity of improving downlink capabilities in small sizes. The global demand for laser satellite communication applications is on the rise. Through this collaboration, we can not only leverage this demand but also strengthen the international reputation of the Netherlands in innovative new space solutions.".

Source: Laser Net

Related Recommendations
  • New Meltio robot unit provides large-scale line laser DED

    Meltio is an expert in the field of cost-effective linear laser metal deposition additive manufacturing technology (directed energy deposition, DED) and has launched the new Meltio Robot Cell, a turnkey metal additive manufacturing solution equipped with industrial robotic arms and the recently launched slicing software Meltio Space.The new hardware aligns with the vision of this Spanish company t...

    2023-09-22
    See translation
  • Coherent's first global manufacturing center in India will focus on the development, production and service of lasers, optical networking components and systems

    Coherent, a global laser giant, has signed a tripartite cooperation agreement (MoU) with the Indian Institute of Technology Madras Research Park (IIT MRP) and Guidance Tamil Nadu Investment Promotion Centre.Coherent will establish its first global Manufacturing Centre (CoE) for laser applications at IIT Madras Research Park, which will focus on R&D, production and services for lasers, optical ...

    2023-09-07
    See translation
  • The global laser technology market is expected to reach 29.5 billion US dollars by 2029

    Recently, Markets And Markets released a five-year assessment report on the global laser industry. According to the report, the global laser technology market is expected to reach $20 billion by 2024 and is projected to reach $29.5 billion by 2029, with a compound annual growth rate of 8.0% during the forecast period.Global Laser Technology Market ForecastThe reasons for market growth include: the...

    2024-07-25
    See translation
  • The researchers used ultrafast lasers to create nanoscale photonic crystals

    The optical properties of photonic crystals are closely related to their lattice constants, which are usually required to be in the same order of magnitude as the operating wavelength. In a crystal material, the photonic crystal structure is formed by the periodic arrangement in space of units whose dielectric constant is different from that of the crystal itself, and whose lattice constant depend...

    2023-08-04
    See translation
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    See translation