English

Lumiotive and Hokuyo announce the launch of the world's first 3D LiDAR sensor with true solid-state beam steering

1022
2024-05-25 15:29:59
See translation

Lumotive, a pioneer in optical semiconductor technology, and Hokuyo Automatic Co., a global leader in sensors and automation, Ltd. announced today the commercial version of the YLM-10LX 3D LiDAR sensor. This breakthrough product features Lumiotive's light controlled metasurface (LCM) ™) Optical beamforming technology represents a significant leap in the application of solid-state programmable optical devices to change 3D sensing in industrial automation and service robot applications.

Lumiotive's LCM technology utilizes the power of dynamic metasurfaces to manipulate and guide light in ways that were previously impossible, eliminating the need for bulky, expensive, and fragile mechanical moving components in traditional LiDAR systems. The LCM chip is the true solid-state beam control component of LiDAR, which can achieve unparalleled stability and accuracy in 3D object recognition and distance measurement, and effectively handle multipath interference, which is crucial for performance and safety in industrial environments.

Hokuyo's new sensor is the first of its kind in the LiDAR industry, integrating beam control with Lumiotive's LM10 chip to achieve excellent range and field of view (FOV) compared to any other solid-state solution on the market. In addition, The digital and software defined scanning function of LCM beam control allows users to easily adjust performance parameters such as sensor resolution, detection range, and frame rate, and can program and use multiple FOVs simultaneously, seamlessly adapting to application requirements and constantly changing indoor and outdoor conditions.

"The YLM-10LX sensor marks a breakthrough in 3D LiDAR technology, opening up new possibilities for automation and robotics," said Chiai Tabata, Head of Product and Marketing at Hokuyo. With the increasing demand for high-performance and reliable LiDAR systems in the industrial sector, these systems also have flexibility to meet various application needs. Our continuous cooperation with Lumiotive enables us to leverage the enormous potential of LCM beam control and provide innovative solutions to meet the ever-changing needs of customers.

Dr. Axel Fuchs, Vice President of Business Development at Lumiotive, said, "We are pleased to see our LM10 chip become the core of Hokuyo's new YLM-10LX sensor. This is our client's first product, and we are beginning to deploy our revolutionary beam control technology to the market." This product release highlights the enormous potential of our programmable optical devices in industrial robotics and other fields. We look forward to working with Hokuyo to continue redefining the possibilities of 3D sensing.

Lumiotive's LM10 LCM is a chip level solid-state beam control solution for LiDAR, enabling sensor manufacturers like Hokuyo to quickly integrate compact adaptive programmable optical devices into their products. Like all LCMs, LM10 is manufactured using mature and scalable silicon manufacturing technology, which reduces costs through economies of scale and makes solid-state LiDAR easy to use and economically feasible, making it widely adopted in a wide range of industries.

The commercial release of the YLM-1 0LX sensor is another important milestone for Hokuyo and Lumiotive's long-term strategic partnership and ongoing investment. The two companies will continue to combine Hokuyo's industry-leading expertise with Lumiotive's game changing optical semiconductors to break through the boundaries of 3D LiDAR technology and drive innovation in a wide range of applications.

Source: Laser Net

Related Recommendations
  • PsiQuantum completes $1 billion equity financing

    PsiQuantum, the Palo Alto startup at the forefront of photonics-based quantum computer development, says it will break ground on two manufacturing sites after closing a series E venture round that raised $1 billion.The new funding, led by private equity giant Blackrock and featuring several others including Nvidia’s venture capital wing, will enable the firm to build quantum computing sites in Bri...

    09-16
    See translation
  • Innovating Photonics: Lithium Tantalate Provides Power for the Next Generation of Optoelectronic Circuits

    The new photonic integrated circuit technology based on lithium tantalate has improved cost efficiency and scalability, making significant progress in the fields of optical communication and computing.The rapid development of photonic integrated circuits (PICs) has revolutionized optical communication and computing systems, combining multiple optical devices and functions on a single chip.For deca...

    2024-05-14
    See translation
  • The Application of Femtosecond Laser in Precision Photonics Manufacturing

    Femtosecond laser emits ultra short light pulses with a duration of less than 1 picosecond, reaching the femtosecond domain. The characteristics of femtosecond lasers are extremely short pulse width and high peak intensity.Ultra short blasting can minimize waste heat, ensure precise material processing, and minimize incidental damage. Their peak intensities can cause nonlinear optical interactions...

    2024-02-28
    See translation
  • Multinational research team achieves breakthrough in diamond Raman laser oscillator

    Recently, the team led by Professor Lv Zhiwei and Professor Bai Zhenxu from Hebei University of Technology, in collaboration with Professor Richard Mildren from Macquarie University in Australia and Professor Takashige Omatsu from Chiba University in Japan, successfully achieved direct output of Raman vortex optical rotation with large wavelength extension in a diamond Raman laser oscillator. This...

    02-27
    See translation
  • Toshiba has developed the world's highest precision 99.9% LiDAR technology

    Recently, Toshiba announced that in the field of LiDAR lidar for distance measurement, it has developed a technology that can track vehicles, people, and other objects with 99.9% accuracy, achieving the world's highest accuracy. And only using LiDAR to collect data can achieve 98.9% object recognition.In addition, the detection distance in rainstorm and dense fog environments has been increased by...

    2023-10-06
    See translation