English

The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

435
2023-09-04 17:03:28
See translation

Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel.

 

The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although as much as 32 million tons of used refractory materials are produced worldwide each year, only a small fraction of this is recycled.

The production of refractories from primary feedstocks generates a considerable amount of CO2, mainly because CO2 must be removed from carbonate-type feedstocks. In addition, raw materials are mainly imported to Europe. There is currently no obvious alternative - and laser devices would be an excellent solution to this problem.

Automatic sorting by laser device

Alexander Leitner, resource project Coordinator at RHI Magnesita, explains: "Refractory products can be precisely adapted to customer requirements. The optimal composition of a high temperature resistant material depends on the intended application, the manufacturing process, and the associated chemical properties of the process medium. This means that our products have very different ingredients. So we have to separate them as precisely as possible before recycling them."

Therefore, the centrepiece of the project is an automatic sorting system for used refractory materials. The laser device will be used to identify the composition of the materials used on the conveyor belt without coming into contact with them. The Laser technology comes from Laser Analytical Systems & Automation (LSA) in Aachen, a spin-off company of the Fraunhofer ILT, which focuses on the development and production of real-time laser analysis systems for industrial applications.

"At Fraunhofer ILT, we have developed an online measurement technology that allows direct analysis of metal scrap on conveyor belts and detects the composition of each scrap." Dr. Cord Fricke-Begemann, head of the Materials Analysis group at Fraunhofer ILT, said, "With this multi-element analysis, we can detect a large number of alloys. We are now transferring these findings to refractories."

The research partners expect that as a result of the findings of this project, they can increase the potential recycling share of the industry from the previous 7% to 30-90%. "We are combining the latest analytics with state-of-the-art software to address current environmental concerns." We are on track to reduce CO2 emissions in Europe by 800,000 tonnes a year." Mr Cord Fricke-Begemann said.

A new method using laser as an underwater metal cutting tool

The demand for modern demolition techniques for underwater use is also growing. For example, to increase the generating capacity of offshore wind farms, old steel frames must first be removed below sea level and then rebuilt on a larger scale.

The Fraunhofer Institute for Materials and Beam Technology (IWS) in Dresden, Germany, has now found a technical way to use lasers as an efficient, environmentally friendly and energy efficient cutting tool in water.

To cut steel and other metals below the surface of the water, IWS researchers use a short-wavelength green laser that can cut even in water. At the same time, water acts as a tool to expel the resulting melt through the incision through pressure. This eliminates power loss, additional gas lines, and other drawbacks. In the lab, this has worked.

In September 2023, IWS will present this innovative process at the SchweiBen & Schneiden Welding and Cutting Exhibition in Essen, Germany.

Cutting metal with lasers is not a new method. However, it is usually operated in a dry environment - infrared or other fairly long lasers are used to cut metal after obtaining magnification benefits.

The IWS engineers used a green laser that has a much shorter wavelength than most current industrial lasers. However, this is possible because green lasers of more than 1kW class have become available to achieve the necessary cutting power.

In the future, a blue laser version with a shorter wavelength is also expected to be easily achieved. This short-wave laser can even penetrate water without causing major damage and loss, so it can also be used in water bodies. This medium, which is abundant in the ocean, can replace the cutting gas required in dry environments, thus eliminating the need for natural gas pipelines.

Source: OFweek

Related Recommendations
  • Germany has developed direct laser welding technology to achieve adhesive free connection from fiber to chip

    Recently, researchers and their partners from the Fraunhofer Institute for Reliability and Microstructure (IZM) in Germany announced the successful development of a laser welding technology that can efficiently fix optical fibers onto photonic integrated circuits (PICs) without the need for adhesive bonding.This technology is developed in response to biophoton sensing technology, mainly utilizing ...

    2023-08-22
    See translation
  • Panasonic has announced the launch of two new laser projectors

    Panasonic announced the launch of two new 1-Chip 4K DL laser projectors, the PT-REQ15 projector offering 15,000 lumens of brightness, while its counterpart, the PT-REZ15, offers 15,000 lumens of WUXGA resolution.The REQ15 uses Panasonic's Quad Pixel Drive, a two-axis pixel shift technology, to reproduce 4K images. It is capable of projecting 2K/240Hz content on multiple edge hybrid screens with a ...

    2023-09-07
    See translation
  • Improvements in LiDAR technology will help NASA scientists and explorers perform remote sensing and measurement functions

    Improvements in LiDAR technology will assist NASA scientists and explorers in remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance, and navigation.Like sonar that uses light instead of sound, LiDAR technology is increasingly helping NASA scientists and explorers with remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance...

    2023-10-26
    See translation
  • Monport Laser's grand anniversary event ignited a boom in laser engraving industry

    Monport Laser, a leading manufacturer of laser engraving machines, is pleased to announce an exciting anniversary on its website. The event will mark the anniversary of Monport Laser and offer customers a range of exclusive offers and promotions. The event will highlight Monport Laser's commitment to innovation, customer satisfaction and the magic of laser engraving.The Monport Laser Anniversary...

    2023-08-04
    See translation
  • BLT launches a new BLT-S800 metal PBF 3D printer equipped with 20 lasers

    Bright Laser Technologies (BLT), a global leader in additive manufacturing headquartered in China, has launched a new BLT-S800 metal 3D printer with a super large construction volume (800 mm x 800 mm x 600 mm) and a 20 fiber laser configuration, which can shorten part delivery time and achieve rapid customer manufacturing.The BLT-S800 system supports titanium alloy, aluminum alloy, high-temperatur...

    2023-10-19
    See translation