English

NASA will demonstrate laser communications on the space station to improve space communications capabilities

35
2023-09-04 17:12:37
See translation

Recently, in order to improve the National Aeronautics and Space Administration (NASA) space communications capabilities, NASA plans to send a technology demonstration called "Integrated LCRD Low Earth Orbit User Modem and Amplifier Terminal (ILLUMA-T)" to the space station in 2023. 

ILLUMA-T and the Laser Communications Relay Demonstration (LCRD), launched in December 2021, will together complete NASA's first two-way end-to-end laser relay system.

(Photo credit: NASA)

Advantages of laser communication systems

Laser communication systems use invisible infrared light to send and receive information at higher data transfer rates. It took about nine weeks for the original radio frequency system to transmit a complete map of Mars back to Earth, while it took about nine days using lasers. As a result, with higher data transfer rates, missions can send more images and videos to Earth in a single transmission. 

Once installed on the space station, ILLUMA-T will demonstrate the benefits of higher data transfer rates for low-Earth orbit missions. Laser communications provide greater flexibility for missions, as well as a quick way to get data from space. NASA is currently integrating this technology in near-Earth, lunar and deep space demonstrations.

In addition to the advantages of faster data transmission rates, laser systems also have key advantages in spacecraft design due to their lighter weight and lower energy consumption. ILLUMA-T, which is about the size of a standard refrigerator, will be attached to the station's external module for demonstration via LCRD. 

Currently, LCRD is demonstrating the benefits of laser relay in geosynchronous orbit (22,000 miles above Earth), further refining NASA's laser capabilities by transmitting data between two ground stations and conducting experiments. Once ILLUMA-T is aboard the space station, the terminal will send high-resolution data, including pictures and video, to the LCRD at a rate of 1,200 megabits per second. The data will then be sent from LCRD to ground stations in Hawaii and California. This demonstration will show how laser communication can benefit low-Earth orbit missions.

ILLUMA-T is being launched as a payload on SpaceX's 29th commercial resupply services mission for NASA. During the first two weeks after launch, ILLUMA-T will be removed from the trunk of the Dragon spacecraft and installed on the station's Japanese Experimental Module Exposure Facility (JEM-EF). 

Once the payload is installed, the ILLUMA-T team will conduct initial testing and on-orbit inspections. Once that's done, the team will launch an onslaught of the payload's first light - a major milestone for the mission that will transmit the first laser beam to the LCRD through its optical telescope. Once the first light appears, data transmission and laser communication experiments will begin and continue throughout the planned mission.

Test lasers in different scenarios

In the future, operational laser communications will complement the radio frequency systems that many space missions still rely on to transmit data back to Earth. While ILLUMA-T is not the first mission to test laser communications in space, it brings NASA one step closer to actually applying the technology.

In addition to LCRD, ILLUMA-T's predecessors include: the 2022 TeraByte InfraRed Delivery system, which is currently testing laser communication on small Cubesats in low Earth orbit; Lunar laser communication demonstration to transmit data to and from lunar orbit and Earth during the Lunar Atmosphere and Dust Environment Explorer mission in 2014; And 2017 Lasercomm Science's optical payload, which demonstrates how laser communication can speed up the flow of information between Earth and space compared to radio signals.

Testing the ability of laser communications to generate higher data transfer rates in a variety of scenarios will help the aerospace community further refine the capabilities of future missions to the moon, Mars and deep space.

Source: OFweek

Related Recommendations
  • Global manufacturer JQ Laser launches a new fully automatic pipe laser cutting machine equipped with a fully automatic feeding device

    JQ LASER, a global manufacturer specializing in laser cutting machines, has launched a new fully automatic pipeline laser cutting machine model T120A.According to JQ LASER's report on the 16th, the body of this new product adopts a vertical rather than horizontal design, reducing the machining center and improving stability.In the past, traditional double chuck pipe cutting machines had a fixed fr...

    2023-10-18
    See translation
  • Germany Developed Short Wave Green Laser Underwater Cutting Technology

    With the prominent energy issues in various countries around the world, the utilization and development of energy have become a hot topic, and the demand for renewable energy is constantly increasing. The existing underwater infrastructure is no longer sufficient and needs to be dismantled using appropriate modern technology. For example, in order to increase the power of offshore wind power plant...

    2023-09-18
    See translation
  • Progress makes laser based imaging simpler and more three-dimensional

    a. b. Schematic diagram of PACTER system calibration and imaging program. BT, beam trap; DAQ, data acquisition unit; HWP, half wave plate; PBS, polarization beam splitter; ER, traverse the relay. The difference between the two modes is highlighted by a black dashed box. c. Schematic diagram of a single component ultrasonic transducer manufactured on ER. d. The ultrasound transducer detected 1D P...

    2023-12-05
    See translation
  • Dazu Photonics launched the third generation of high power fiber laser successfully increased the product power to 50kW

    In recent years, with the vigorous development of new energy and other industries, the improvement of environmental awareness and the increasing demand for new applications, the demand for fiber lasers in intelligent manufacturing is increasing, and the demand for power is also increasing, and high-power fiber lasers can significantly improve production efficiency and are widely sought after by th...

    2023-09-02
    See translation
  • The rare decay of the Higgs boson may point to physics beyond the standard model

    Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quan...

    2024-01-26
    See translation