English

MIT researchers have demonstrated a novel chip based resin 3D printer

845
2024-06-17 15:22:09
See translation

Researchers from the Massachusetts Institute of Technology and the University of Texas at Austin showcased the first chip based resin 3D printer. Their concept verification tool consists of a millimeter sized photon chip that emits a programmable beam of light into resin holes, which solidify into a solid structure when exposed to light.

The prototype processor does not have mobile components, but uses a series of small optical antennas to guide the beam of light. The beam is projected upwards into the liquid resin, which is carefully designed to quickly cure when exposed to the visible wavelength of the beam.
By integrating silicon photonics and photochemistry, interdisciplinary research teams can demonstrate a chip that can guide a beam of light to 3D print any two-dimensional design, including the letters M-I-T. The shape can be fully constructed within seconds.

Silicon Photonics and Special Resins
The Notaros group, which specializes in silicon photonics, has created an integrated optical phased array device that uses a microscale antenna on a chip to guide a beam of light. They can change the optical signals on both sides of the antenna array to control the beam of light. These systems are crucial for LiDAR sensors, which use infrared light to measure the surrounding environment. Recently, the group has shifted its focus to devices that generate and guide visible light for augmented reality applications.

Around the same time as they began brainstorming, the Page team at the University of Texas at Austin developed for the first time a specialized resin that could rapidly cure using visible light wavelengths. This is the missing part that makes chip based 3D printers a reality.
Corsetti added, "Here, we manufacture this chip based 3D printer by using visible light curing resin and visible light emitting chips, meeting between standard photochemistry and silicon photonics. You integrate the two technologies into a completely new idea.".

Chip based resin 3D printer
Their prototype consists of a photonic chip with a 160 nanometer optical antenna array. The thickness of a piece of paper is about 100000 nanometers. The entire chip is suitable for a quarter of the United States.

When driven by an off chip laser, the antenna guides the controllable visible beam into the holes of the photocured resin. The chip is located below a transparent glass slide, similar to the glass slide used in a microscope, which has a small depression that can capture resin. Researchers use electrical pulses to guide laser beams in a non mechanical manner, making the resin harden at any point of impact.

The Page team at the University of Texas at Austin works closely with the Notaros team at the Massachusetts Institute of Technology to fine tune chemical combinations and concentrations to achieve a formula with a long shelf life and solidification.
Finally, scientists have demonstrated that their prototype can 3D print any two-dimensional shape in just a few seconds.

expectation
In the long run, researchers envision a system where a photon chip is located at the bottom of a resin well and creates a 3D hologram of visible light, thereby solidifying a complete object in one step.
This type of portable 3D printer can have a wide range of applications, including allowing doctors to build customized medical device components and engineers to create rapid prototypes in the workplace.

This study received partial support from the National Science Foundation, the Defense Advanced Research Projects Agency, the Robert Welch Foundation, the MIT Rolf G. Rocher Endowment Scholarship, and the MIT Frederick and Barbara Croning Scholarship.

Source: Laser Net

Related Recommendations
  • Alliance unit Hongshan Laser has released multiple "heavyweight" new products such as heavy-duty pipe cutting machines, ushering in the era of "laser+"

    On September 19th, Hongshan Laser made a stunning appearance at the Shanghai Industrial Expo with multiple flagship products. Among them, the "4+1" fully free heavy-duty groove laser pipe cutting machine TL730S, the 6G fully direct drive laser cutting machine G4020V, and the flagship drilling and attacking integrated laser composite pipe cutting machine TP65SD, represented by three new products, v...

    2023-09-21
    See translation
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    See translation
  • Shanghai Optical Machinery Institute has made progress for the first time in hard X-ray zoom beam imaging

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, completed the research of hard X-ray zoom beam splitting imaging on the micro focus X-ray source for the first time, and solved the problem of beam splitter limitation in the hard X-ray band. The related achievements are titled "Bifocal photo scene imaging in the...

    2024-04-08
    See translation
  • IPG introduces a new dual-beam laser with the highest single-mode core power

    From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding spe...

    2023-09-14
    See translation
  • Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

    Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.Composite materials such as carbon fiber reinforced plastics (CFR...

    2024-03-06
    See translation