English

Shanghai Institute of Optics and Fine Mechanics has made progress in the field of femtosecond laser air filamentation self focusing threshold research

832
2024-08-02 14:22:44
See translation

Recently, the research team of the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research on the repetition rate dependent femtosecond laser air filamentation self focusing threshold. The relevant research results were published in Optics Express under the title "Pulse repetition rate effect on the critical power for self focusing of femtosecond laser in air".

Femtosecond laser filamentation is generated by the dynamic balance between Kerr self focusing effect and plasma defocusing effect, and has shown great potential for applications in fields such as ultra short pulse compression, terahertz radiation, atmospheric remote sensing, and weather control. The development of high-frequency femtosecond laser technology has brought new opportunities for optical fibers in fields such as cloud penetration, artificial lightning induction, and laser processing.

In recent research, the team focused on the atmospheric filamentation process of high-frequency femtosecond laser and discovered the characteristics and laws of high-frequency femtosecond laser filamentation. (Adv. Photon. Res. 4, 2200338 (2023)) They clarified the mechanism of the effect of pulse accumulation on light intensity (High Power Laser 11, e46 (2023)), plasma density, and temperature (Chin. Opt. Lett. 22, 013201 (2024)), and solved the bottleneck problem of automatic filamentation caused by pulse accumulation effect (Light: Sci.&Appl. 13, 42 (2024)). However, the self focusing threshold is a key parameter for evaluating whether the filamentation process occurs, and the effect of high repetition rate dependent pulse accumulation on the self focusing threshold of femtosecond laser filaments is not yet clear.

Figure 1 shows fluorescence signals induced on the filament axis at incident energies of (a) 240 µ J, (b) 280 µ J, (c) 300 µ J, and (d) 325 µ J with a repetition rate of 1 kHz. (e) Residual plots of traditional Gaussian fitting and bimodal fitting

In this work, researchers proposed a new method for determining the self focusing threshold based on bimodal fitting by utilizing the dual effects of geometric focusing and Kerr self focusing during femtosecond laser air filamentation. And through in-depth analysis of residuals, root mean square error, fitting determination coefficients, etc., it is proved that the proposed method is superior to the traditional Gaussian fitting method and can more accurately determine the self focusing threshold. The research team measured the self focusing threshold of femtosecond laser filamentation in air at 1 kHz, 500 Hz, 100 Hz, and 50 Hz repetition rates, and discovered a new pattern of lower self focusing threshold and easier filamentation of femtosecond laser pulses transmitted in air compared to lower and higher repetition rates. The numerical simulation results confirmed the accuracy of the experimental pattern. This work provides new ideas for the study of self focusing and is of great significance for a deeper understanding of the characteristics of high repetition rate femtosecond laser filaments.

Figure 2 shows the functional relationship between the peak position (bimodal fitting) of the fluorescence signal induced by the filament and the pulse energy at repetition rates of (a) 1 kHz, (b) 500 Hz, (c) 100 Hz, and (d) 50 Hz. The intersection point between the red fitting lines represents the self focusing threshold. (e) The functional relationship between self focusing threshold and repetition rate obtained using traditional Gaussian fitting (blue) and bimodal fitting (red)

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

Related Recommendations
  • The new generation of special optical fibers is suitable for the application of quantum technology

    Recently, physicists from the University of Bath in the UK have developed a new generation of specialized optical fibers to address the data transmission challenges of the future quantum computing era. This achievement is expected to promote the expansion of large-scale quantum networks. The research results were published in the latest issue of Applied Physics Letters Quantum.The highly anticipat...

    2024-08-02
    See translation
  • Shanghai Optics and Machinery Institute has made new progress in laser welding of new high-temperature nickel based alloys

    Recently, the research team of Yang Shanglu from the Laser Intelligent Manufacturing Technology R&D Center of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Machinery has made new progress in laser welding of new structural materials for high-temperature molten salts. The research team used a high-power laser for the first time to achieve defect free welding of nick...

    2023-09-01
    See translation
  • FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

    The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jo...

    2024-02-14
    See translation
  • A new approach to 3D printing has been published in a Nature journal

    In the last century, the improvement of mechanical properties of structural metals was mainly achieved through the creation of increasingly complex chemical compositions. The complexity of this ingredient increases costs, creates supply fragility, and makes recycling more complex.As a relatively new metal processing technology, metal 3D printing provides the possibility to re-examine and simplify ...

    2024-11-29
    See translation
  • Osram's new laser headlights "Yutianba" are unveiled

    Recently, OSRAM, a well-known global automotive lighting brand, announced the launch of its modified new laser headlights - the Yutianba laser headlights. Laser headlights were once regarded by many car companies as the "successor" of LED headlights, and German century old automotive lighting expert Osram is precisely the pioneer of laser light sources for automotive headlights. Since the 2014 BMW...

    2024-05-06
    See translation