English

LIS Technologies closes $11.88 million seed round of financing

906
2024-08-22 15:24:26
See translation

On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing.

 



According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a number of investors including 28 Ventures Fund, a leading U.S. advanced nuclear technology company, and several active investors in the nuclear technology sector.

The financing was originally set at $1.3 million, but given the overwhelming response and high level of market acceptance of LIST's Laser Isotope Separation Technology (L.I.S.T.), a significant expansion was ultimately realized, underscoring investors' unwavering confidence in the company's vision and growth potential.

The funding will directly assist the Company in relaunching and accelerating the development and application of its proprietary, patented advanced laser enrichment technology. This technology previously demonstrated its potential in the 1980s and early 1990s and was rated Technology Maturity Level (TRL) 4 by the National Nuclear Security Administration (NNSA), signifying a solid foundation of technological maturity.

LIST plans to utilize the additional funding to build a new R&D facility in Oak Ridge, Tennessee to advance physical testing and demonstration programs, and plans to recruit additional top scientists and engineers to join its elite team to drive technology innovation.

The company's CRISLA technology has a wide range of applications, not limited to the enrichment of uranium for nuclear fuel, but also involves the production of stable isotopes in fields such as medicine and scientific research, as well as cutting-edge applications in quantum computing, particularly semiconductor manufacturing.

The technology is capable of producing Low Enriched Uranium (LEU) and Highly Enriched Uranium (HALEU) in a single or dual-stage process, respectively, through the high selectivity of laser light. Its high throughput, high duty cycle, and simplified process flow herald lower capital and operating costs compared to conventional technologies, demonstrating a strong market competitiveness.

We are honored that LIST and its vision to modernize the U.S. nuclear energy industry and its fuel supply chain is receiving such strong support,” said Christo Liebenberg, CEO of LIS Technologies Inc. This marks an important milestone not only for our company, but also a critical step in a new chapter for the U.S. nuclear energy industry. We are confident that the renaissance of L.I.S.T. technology will lead the world into a new era of more cost-effective uranium enrichment, ensure a stable domestic supply of LEU and HALEU fuel, and lay a solid foundation for a thriving and innovative nuclear energy industry. The investment support from the advanced nuclear technology sector is undoubtedly the best proof of our relentless pursuit and strong commitment.”

About LIS Technologies

LIS Technologies Inc. is a U.S.-based company specializing in the development of advanced laser technologies that utilize infrared wavelengths to precisely excite molecules of targeted isotopes for efficient separation. As a leader in the field of laser uranium enrichment, LIST's L.I.S.T. technology not only outperforms traditional methods (e.g., gaseous diffusion, centrifuges, etc.) in terms of energy efficiency, but also demonstrates significant advantages in terms of capital and operating costs. The technology is widely used in LEU production, HALEU supply for SMRs and micro reactors, stable isotope preparation for medical and scientific research, and semiconductor innovation for quantum computing. The company brings together the world's leading nuclear technology experts and works closely with industry leaders, governments and the private nuclear sector to advance the future of nuclear technology.

Source: OFweek

Related Recommendations
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    See translation
  • New progress in research on laser cleaning and improving the damage threshold of fused quartz components at Shanghai Optics and Machinery Institute

    Recently, the research team of the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, has made new progress in the study of improving the damage threshold of fused quartz elements through laser cleaning. The study proposes for the first time the use of microsecond pulse CO2 laser cleaning to enhance the dam...

    2024-07-08
    See translation
  • Using a new type of ground laser to track space debris

    The Polish Space Research Center of the Celestial Geodynamics Observatory located in Borowitz near Poznan will enhance its capabilities with a new and powerful laser.The first task of this state-of-the-art device is to enable researchers to accurately track the trajectories of 300 previously identified space debris in no less than six months.Observatory Director Pawe ł Lejba emphasized the i...

    2024-03-14
    See translation
  • Siemens will provide Rolls Royce with aerospace additive manufacturing components

    Recently, Siemens Energy's Materials Solutions division (hereinafter referred to as Siemens) officially signed a cooperation agreement with Rolls Royce, a well-known enterprise in the field of aviation engines in the UK, agreeing that Siemens will develop and supply mass-produced additive manufacturing components for Rolls Royce's civil aerospace business.Rolls Royce and 3D Printing TechnologyRoll...

    2024-12-13
    See translation
  • Measuring invisible light through an electro-optic cavity

    Researchers have developed a new experimental platform that can measure the light wave electric field captured between two mirrors with sub periodic accuracy. This electro-optical Fabry Perot resonant cavity will achieve precise control and observation of the interaction between light and matter, especially in the terahertz (THz) spectral range. The research results were published in the journal "...

    02-19
    See translation