English

LIS Technologies closes $11.88 million seed round of financing

949
2024-08-22 15:24:26
See translation

On August 19th, local time, LIS Technologies, a U.S.-based developer of laser uranium enrichment technology, announced the latest closing of an $11.88 million seed round of financing.

 



According to reports, LIS Technologies is a company focused on developing advanced laser technology and is the only U.S.-based laser uranium enrichment company to hold a homegrown patent. The round attracted a number of investors including 28 Ventures Fund, a leading U.S. advanced nuclear technology company, and several active investors in the nuclear technology sector.

The financing was originally set at $1.3 million, but given the overwhelming response and high level of market acceptance of LIST's Laser Isotope Separation Technology (L.I.S.T.), a significant expansion was ultimately realized, underscoring investors' unwavering confidence in the company's vision and growth potential.

The funding will directly assist the Company in relaunching and accelerating the development and application of its proprietary, patented advanced laser enrichment technology. This technology previously demonstrated its potential in the 1980s and early 1990s and was rated Technology Maturity Level (TRL) 4 by the National Nuclear Security Administration (NNSA), signifying a solid foundation of technological maturity.

LIST plans to utilize the additional funding to build a new R&D facility in Oak Ridge, Tennessee to advance physical testing and demonstration programs, and plans to recruit additional top scientists and engineers to join its elite team to drive technology innovation.

The company's CRISLA technology has a wide range of applications, not limited to the enrichment of uranium for nuclear fuel, but also involves the production of stable isotopes in fields such as medicine and scientific research, as well as cutting-edge applications in quantum computing, particularly semiconductor manufacturing.

The technology is capable of producing Low Enriched Uranium (LEU) and Highly Enriched Uranium (HALEU) in a single or dual-stage process, respectively, through the high selectivity of laser light. Its high throughput, high duty cycle, and simplified process flow herald lower capital and operating costs compared to conventional technologies, demonstrating a strong market competitiveness.

We are honored that LIST and its vision to modernize the U.S. nuclear energy industry and its fuel supply chain is receiving such strong support,” said Christo Liebenberg, CEO of LIS Technologies Inc. This marks an important milestone not only for our company, but also a critical step in a new chapter for the U.S. nuclear energy industry. We are confident that the renaissance of L.I.S.T. technology will lead the world into a new era of more cost-effective uranium enrichment, ensure a stable domestic supply of LEU and HALEU fuel, and lay a solid foundation for a thriving and innovative nuclear energy industry. The investment support from the advanced nuclear technology sector is undoubtedly the best proof of our relentless pursuit and strong commitment.”

About LIS Technologies

LIS Technologies Inc. is a U.S.-based company specializing in the development of advanced laser technologies that utilize infrared wavelengths to precisely excite molecules of targeted isotopes for efficient separation. As a leader in the field of laser uranium enrichment, LIST's L.I.S.T. technology not only outperforms traditional methods (e.g., gaseous diffusion, centrifuges, etc.) in terms of energy efficiency, but also demonstrates significant advantages in terms of capital and operating costs. The technology is widely used in LEU production, HALEU supply for SMRs and micro reactors, stable isotope preparation for medical and scientific research, and semiconductor innovation for quantum computing. The company brings together the world's leading nuclear technology experts and works closely with industry leaders, governments and the private nuclear sector to advance the future of nuclear technology.

Source: OFweek

Related Recommendations
  • Outlook - Future of miniaturized lasers

    The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks ...

    2023-12-19
    See translation
  • Researchers have implemented a creative approach to reduce stray light using spatial locking technology based on periodic shadows

    Reducing stray light is one of the main challenges in combustion experiments using laser beams (such as Raman spectroscopy) for detection. By using a combination of ultrafast laser pulses and gated ICCD or emICCD cameras, a time filter can be effectively used to remove bright and constant flame backgrounds. When the signal reaches the detector, these cameras can open electronic shutters within the...

    2023-10-16
    See translation
  • Nanchang University research progresses in acoustic resolution photoacoustic microimaging enhancement

    As a promising imaging modality that combines the high spatial resolution of optical imaging and the deep tissue penetration ability of ultrasound imaging, photoacoustic microscopy (PAM) has attracted a lot of attention in the field of biomedical research, and has a wide range of applications in many fields, such as tumor detection, dermatology, and vascular morphology assessment. Depending on the...

    2024-09-18
    See translation
  • Diamond Light Source and NPL reach a new five-year agreement

    Recently, two leading UK scientific institutions, Diamond Light Source and National Physical Laboratory (NPL), have reached a new five-year agreement to promote joint collaborative efforts.The agreement was approved by signing a Memorandum of Understanding (MoU), which will bring these two institutions together.Diamond Light Source is a national synchrotron facility in the UK known for generating ...

    2024-04-25
    See translation
  • Scientists achieve extremely short laser pulses with a peak power of 6 terawatts

    RIKEN's two physicists have achieved extremely short laser pulses with a peak power of 6 terawatts (6 trillion watts) - roughly equivalent to the power generated by 6000 nuclear power plants. This achievement will contribute to the further development of attosecond lasers, for which three researchers were awarded the Nobel Prize in Physics in 2023. This study was published in the journal Nature Ph...

    2024-04-22
    See translation